Ice, fire, or fizzle: The climate footprint of Earth's supercontinental cycles
Geochemistry, Geophysics, Geosystems American Geophysical Union 21:2 (2020) e2019GC008464
Abstract:
Supercontinent assembly and breakup can influence the rate and global extent to which insulated and relatively warm subcontinental mantle is mixed globally, potentially introducing lateral oceanic‐continental mantle temperature variations that regulate volcanic and weathering controls on Earth's long‐term carbon cycle for a few hundred million years. We propose that the relatively warm and unchanging climate of the Nuna supercontinental epoch (1.8–1.3 Ga) is characteristic of thorough mantle thermal mixing. By contrast, the extreme cooling‐warming climate variability of the Neoproterozoic Rodinia episode (1–0.63 Ga) and the more modest but similar climate change during the Mesozoic Pangea cycle (0.3–0.05 Ga) are characteristic features of the effects of subcontinental mantle thermal isolation with differing longevity. A tectonically modulated carbon cycle model coupled to a one‐dimensional energy balance climate model predicts the qualitative form of Mesozoic climate evolution expressed in tropical sea‐surface temperature and ice sheet proxy data. Applied to the Neoproterozoic, this supercontinental control can drive Earth into, as well as out of, a continuous or intermittently panglacial climate, consistent with aspects of proxy data for the Cryogenian‐Ediacaran period. The timing and magnitude of this cooling‐warming climate variability depends, however, on the detailed character of mantle thermal mixing, which is incompletely constrained. We show also that the predominant modes of chemical weathering and a tectonically paced abiotic methane production at mid‐ocean ridges can modulate the intensity of this climate change. For the Nuna epoch, the model predicts a relatively warm and ice‐free climate related to mantle dynamics potentially consistent with the intense anorogenic magmatism of this period.Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants
Environmental Research Letters IOP Publishing 15:4 (2020) 044023
Abstract:
The atmospheric lifetime and radiative impacts of different climate pollutants can both differ markedly, so metrics that equate emissions using a single scaling factor, such as the 100-year Global Warming Potential (GWP100), can be misleading. An alternative approach is to report emissions as 'warming-equivalents' that result in similar warming impacts without requiring a like-for-like weighting per emission. GWP*, an alternative application of GWPs where the CO2-equivalence of short-lived climate pollutant (SLCP) emissions is predominantly determined by changes in their emission rate, provides a straightforward means of generating warming-equivalent emissions. In this letter we illustrate the contrasting climate impacts resulting from emissions of methane, a short-lived greenhouse gas, and CO2, and compare GWP100 and GWP* CO2-equivalents for a number of simple emissions scenarios. We demonstrate that GWP* provides a useful indication of warming, while conventional application of GWP100 falls short in many scenarios and particularly when methane emissions are stable or declining, with important implications for how we consider 'zero emission' or 'climate neutral' targets for sectors emitting different compositions of gases. We then illustrate how GWP* can provide an improved means of assessing alternative mitigation strategies. GWP* allows warming-equivalent emissions to be calculated directly from CO2-equivalent emissions reported using GWP100, consistent with the "Paris Rulebook" agreed by the UNFCCC. It provides a direct link between emissions and anticipated warming impacts, supporting stocktakes of progress towards a long-term temperature goal and compatible with cumulative emissions budgets.Response of the quasi‐biennial oscillation to a warming climate in global climate models
Quarterly Journal of the Royal Meteorological Society Wiley (2020) qj.3749
The equatorial stratospheric semiannual oscillation and time‐mean winds in QBOi models
Quarterly Journal of the Royal Meteorological Society Wiley 148:744A (2020) 1593-1609
Abstract:
The Quasi‐Biennial Oscillation initiative (QBOi) is a model intercomparison programme that specifically targets simulation of the QBO in current global climate models. Eleven of the models or model versions that participated in a QBOi intercomparison study have upper boundaries in or above the mesosphere and therefore simulate the region where the stratopause semiannual oscillation (SAO) is the dominant mode of variability of zonal winds in the tropical upper stratosphere. Comparisons of the SAO simulations in these models are presented here. These show that the model simulations of the amplitudes and phases of the SAO in zonal‐mean zonal wind near the stratopause agree well with the information derived from available observations. However, most of the models simulate time‐average zonal winds that are more westward than determined from observations, in some cases by several tens of m·s–1. Validation of wave activity in the models is hampered by the limited observations of tropical waves in the upper stratosphere but suggests a deficit of eastward forcing either by large‐scale waves, such as Kelvin waves, or by gravity waves.An interdecadal shift of the extratropical teleconnection from the tropical Pacific during boreal summer
Geophysical Research Letters American Geophysical Union 46:22 (2019) 13379-13388