Daily to decadal modulation of jet variability

Journal of Climate American Meteorological Society 31:4 (2018) 1297-1314

Authors:

Tim Woollings, E Barnes, B Hoskins, Y-O Kwon, RW Lee, C Li, E Madonna, M McGraw, Tess Parker, R Rodrigues, C Spensberger, K Williams

Abstract:

The variance of a jet’s position in latitude is found to be related to its average speed: when a jet becomes stronger its variability in latitude decreases. This relationship is shown to hold for observed midlatitude jets around the world and also across a hierarchy of numerical models. North Atlantic jet variability is shown to be modulated on decadal timescales, with decades of a strong, steady jet being interspersed with decades of a weak, variable jet. These modulations are also related to variations in the basin-wide occurrence of high-impact blocking events. A picture emerges of complex multidecadal jet variability in which recent decades do not appear unusual. We propose an underlying barotropic mechanism to explain this behaviour, related to the change in refractive properties of a jet as it strengthens, and the subsequent effect on the distribution of Rossby wave breaking.

Climate impacts from a removal of anthropogenic aerosol emissions

Geophysical Research Letters American Geophysical Union 45:2 (2018) 1020-1029

Authors:

BH Samset, M Sand, CJ Smith, PM Forster, JS Fuglestvedt, Scott Osprey, CF Schleussner

Abstract:

Limiting global warming to 1.5 or 2.0 °C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to co-emission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present day anthropogenic aerosol emissions, and compare them to the impacts from moderate GHG dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1 °C, and precipitation increase of 2.0-4.6 %. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

An interdisciplinary approach to the study of extreme weather events: large-scale atmospheric controls and insights from dynamical systems theory and statistical mechanics

Bulletin of the American Meteorological Society American Meteorological Society 99:5 (2018) es81-es85

Authors:

Gabriele Messori, Rodrigo Caballero, Freddy Bouchet, Davide Faranda, Richard Grotjahn, Nili Harnik, Steve Jewson, Joaquim G Pinto, Gwendal Rivière, Tim Woollings, Pascal Yiou

Supplementary material to "Surface impacts of the Quasi Biennial Oscillation"

(2017)

Authors:

Lesley J Gray, James A Anstey, Yoshio Kawatani, Hua Lu, Scott Osprey, Verena Schenzinger

Changing response of the North Atlantic/European Winter Climate to the 11-year solar cycle

Environmental Research Letters IOP Publishing 13:3 (2017) 1-10

Authors:

H Ma, H Chen, Lesley Gray, L Zhou, X Li, R Wang, S Zhu

Abstract:

Recent studies have presented conflicting results regarding the 11-year solar cycle (SC) influences on winter climate over the North Atlantic/European region. Analyses of only the most recent decades suggest a synchronized North Atlantic Oscillation (NAO)-like response pattern to the SC. Analyses of long-term climate data sets dating back to the late 19th century, however, suggest a mslp response that lags the SC by 2-4 years in the southern node of the NAO (i.e. Azores region). To understand the conflicting nature and cause of these time dependencies in the SC surface response, the present study employs a lead/lag multi-linear regression technique with a sliding window of 44-years over the period 1751-2016. Results confirm previous analyses, in which the average response for the whole time period features a statistically significant 2-4-year lagged mslp response centered over the Azores region. Overall, the lagged nature of Azores mslp response is generally consistent in time, with stronger and statistically significant SC signals tend to appear in the periods when the SC forcing amplitudes are relatively larger. Individual month analysis indicates the consistent lagged response in December-January-February average arises primarily from early winter months (i.e. December and January), which is associated with ocean feedback processes that involve reinforcement by anomalies from the previous winter. Additional analysis suggests that the synchronous NAO-like response in recent decades arises primarily from the late winter month (February), possibly reflecting a result of strong internal noise.