Supplementary material to "Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic"

(2022)

Authors:

Haochi Che, Philip Stier, Duncan Watson-Parris, Hamish Gordon, Lucia Deaconu

Opportunistic experiments to constrain aerosol effective radiative forcing

Atmospheric Chemistry and Physics Copernicus Publications 22:1 (2022) 641-674

Authors:

Matthew W Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L McCoy, Daniel T McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, Tianle Yuan

Abstract:

Aerosol–cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.

Productivity meets Performance: Julia on A64FX

Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 549-555

Authors:

Mosè Giordano, Milan Klöwer, Valentin Churavy

Expectation Programming: Adapting Probabilistic Programming Systems to Estimate Expectations Efficiently

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence, UAI 2022 (2022) 1676-1685

Authors:

T Reichelt, A Goliński, L Ong, T Rainforth

Abstract:

We show that the standard computational pipeline of probabilistic programming systems (PPSs) can be inefficient for estimating expectations and introduce the concept of expectation programming to address this. In expectation programming, the aim of the backend inference engine is to directly estimate expected return values of programs, as opposed to approximating their conditional distributions. This distinction, while subtle, allows us to achieve substantial performance improvements over the standard PPS computational pipeline by tailoring computation to the expectation we care about. We realize a particular instance of our expectation programming concept, Expectation Programming in Turing (EPT), by extending the PPS Turing to allow so-called target-aware inference to be run automatically. We then verify the statistical soundness of EPT theoretically, and show that it provides substantial empirical gains in practice.

Past and future coastal flooding in Pacific Small-Island Nations: insights from the Pacific Sea Level and Geodetic Monitoring (PSLGM) Project tide gauges

Journal of Southern Hemisphere Earth Systems Science CSIRO Publishing 72:3 (2022) 202-217

Authors:

Mathilde Ritman, Ben Hague, Tauala Katea, Tavau Vaaia, Arona Ngari, Grant Smith, David Jones, Léna Tolu