NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations

(2020)

Authors:

Paula Harder, William Jones, Redouane Lguensat, Shahine Bouabid, James Fulton, Dánell Quesada-Chacón, Aris Marcolongo, Sofija Stefanović, Yuhan Rao, Peter Manshausen, Duncan Watson-Parris

An AeroCom–AeroSat study: intercomparison of satellite AOD datasets for aerosol model evaluation

Atmospheric Chemistry and Physics Copernicus GmbH 20:21 (2020) 12431-12457

Authors:

Nick Schutgens, Andrew M Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter JT Leonard, Robert C Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, Philip Stier

Abstract:

<jats:p>Abstract. To better understand and characterize current uncertainties in the important observational constraint of climate models of aerosol optical depth (AOD), we evaluate and intercompare 14 satellite products, representing nine different retrieval algorithm families using observations from five different sensors on six different platforms. The satellite products (super-observations consisting of 1∘×1∘ daily aggregated retrievals drawn from the years 2006, 2008 and 2010) are evaluated with AErosol RObotic NETwork (AERONET) and Maritime Aerosol Network (MAN) data. Results show that different products exhibit different regionally varying biases (both under- and overestimates) that may reach ±50 %, although a typical bias would be 15 %–25 % (depending on the product). In addition to these biases, the products exhibit random errors that can be 1.6 to 3 times as large. Most products show similar performance, although there are a few exceptions with either larger biases or larger random errors. The intercomparison of satellite products extends this analysis and provides spatial context to it. In particular, we show that aggregated satellite AOD agrees much better than the spatial coverage (often driven by cloud masks) within the 1∘×1∘ grid cells. Up to ∼50 % of the difference between satellite AOD is attributed to cloud contamination. The diversity in AOD products shows clear spatial patterns and varies from 10 % (parts of the ocean) to 100 % (central Asia and Australia). More importantly, we show that the diversity may be used as an indication of AOD uncertainty, at least for the better performing products. This provides modellers with a global map of expected AOD uncertainty in satellite products, allows assessment of products away from AERONET sites, can provide guidance for future AERONET locations and offers suggestions for product improvements. We account for statistical and sampling noise in our analyses. Sampling noise, variations due to the evaluation of different subsets of the data, causes important changes in error metrics. The consequences of this noise term for product evaluation are discussed. </jats:p>

Number formats, error mitigation, and scope for 16‐bit arithmetics in weather and climate modeling analyzed with a shallow water model

Journal of Advances in Modeling Earth Systems American Geophysical Union 12:10 (2020) e2020MS002246

Authors:

Pd Düben, Tn Palmer

Abstract:

The need for high‐precision calculations with 64‐bit or 32‐bit floating‐point arithmetic for weather and climate models is questioned. Lower‐precision numbers can accelerate simulations and are increasingly supported by modern computing hardware. This paper investigates the potential of 16‐bit arithmetic when applied within a shallow water model that serves as a medium complexity weather or climate application. There are several 16‐bit number formats that can potentially be used (IEEE half precision, BFloat16, posits, integer, and fixed‐point). It is evident that a simple change to 16‐bit arithmetic will not be possible for complex weather and climate applications as it will degrade model results by intolerable rounding errors that cause a stalling of model dynamics or model instabilities. However, if the posit number format is used as an alternative to the standard floating‐point numbers, the model degradation can be significantly reduced. Furthermore, mitigation methods, such as rescaling, reordering, and mixed precision, are available to make model simulations resilient against a precision reduction. If mitigation methods are applied, 16‐bit floating‐point arithmetic can be used successfully within the shallow water model. The results show the potential of 16‐bit formats for at least parts of complex weather and climate models where rounding errors would be entirely masked by initial condition, model, or discretization error.

The 2020 Climate Informatics Hackathon: Generating Nighttime Satellite Imagery from Infrared Observations

Association for Computing Machinery (ACM) (2020) 134-138

Authors:

William K Jones, Redouane Lguensat, Anastase Charantonis, Duncan Watson-Parris

Constraint on precipitation response to climate change by combination of atmospheric energy and water budgets

npj Climate and Atmospheric Science Springer Nature 3 (2020) 34

Authors:

guy Dagan, Philip Stier

Abstract:

Global mean precipitation is expected to increase with increasing temperatures, a process which is fairly well understood. In contrast, local precipitation changes, which are key for society and ecosystems, demonstrate a large spread in predictions by climate models, can be of both signs and have much larger magnitude than the global mean change. Previously, two top-down approaches to constrain precipitation changes were proposed, using either the atmospheric water or energy budget. Here, using an ensemble of 27 climate models, we study the relative importance of these two budgetary constraints and present analysis of the spatial scales at which they hold. We show that specific geographical locations are more constrained by either one of the budgets and that the combination of water and energy budgets provides a significantly stronger constraint on the spatial scale of precipitation changes under anthropogenic climate change (on average about 3000 km, above which changes in precipitation approach the global mean change). These results could also provide an objective way to define the scale of ‘regional’ climate change.