Bounding global aerosol radiative forcing of climate change

Reviews of Geophysics American Geophysical Union 58:1 (2019) e2019RG000660

Authors:

N Bellouin, J Quaas, E Gryspeerdt, S Kinne, Philip Stier, D Watson-Parris, O Boucher, KS Carslaw, M Christensen, A-L Daniau, JL Dufresne, G Feingold, S Fiedler, P Forster, A Gettelman, JM Haywood, U Lohmann, F Malavelle, T Mauritsen, DT McCoy, G Myhre, J Muelmenstaedt, D Neubauer, A Possner, M Rugenstein, Y Sato, M Schulz, Schwartz, O Sourdeval, T Storelvmo, V Toll, D Winker, B Stevens

Abstract:

Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol‐radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol‐driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed‐phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of ‐1.6 to ‐0.6 W m−2, or ‐2.0 to ‐0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial‐era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds.

tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets

GEOSCIENTIFIC MODEL DEVELOPMENT 12:11 (2019) 4551-4570

Authors:

Max Heikenfeld, Peter J Marinescu, Matthew Christensen, Duncan Watson-Parris, Fabian Senf, Susan C van den Heever, Philip Stier

Ensembles of global climate model variants designed for the quantification and constraint of uncertainty in aerosols and their radiative forcing

Journal of Advances in Modeling Earth Systems American Geophysical Union 11:11 (2019) 3728-3754

Authors:

M Yoshioka, LA Regayre, KJ Pringle, JS Johnson, GW Mann, DG Partridge, DMH Sexton, GMS Lister, N Schutgens, Philip Stier, Z Kipling, N Bellouin, J Browse, BBB Booth, CE Johnson, B Johnson, JDP Mollard, L Lee, KS Carslaw

Abstract:

Tropospheric aerosol radiative forcing has persisted for many years as one of the major causes of uncertainty in global climate model simulations. To sample the range of plausible aerosol and atmospheric states and perform robust statistical analyses of the radiative forcing, it is important to account for the combined effects of many sources of model uncertainty, which is rarely done due to the high computational cost. This paper describes the designs of two ensembles of the HadGEM-UKCA global climate model and provides the first analyses of the uncertainties in aerosol radiative forcing and their causes. The first ensemble was designed to comprehensively sample uncertainty in the aerosol state, while the other samples additional uncertainties in the physical model related to clouds, humidity and radiation, thereby allowing an analysis of uncertainty in the aerosol effective radiative forcing. Each ensemble consists of around 200 simulations of the pre-industrial and present-day atmospheres. The uncertainty in aerosol radiative forcing in our ensembles is comparable to the range of estimates from multi-model intercomparison projects. The mean aerosol effective radiative forcing is –1.45 W m–2 (credible interval –2.07 to –0.81 W m–2), which encompasses but is more negative than the –1.17 W m–2 in the 2013 Atmospheric Chemistry and Climate Model Intercomparison Project and –0.90 W m–2 in the IPCC 5th 47 Assessment Report. The ensembles can be used to reduce aerosol radiative forcing uncertainty by challenging them with multiple measurements as well as to isolate potential causes of multi-model differences.

Water vapour adjustments and responses differ between climate drivers

Atmospheric Chemistry and Physics Copernicus Publications 19:20 (2019) 12887-12899

Authors:

O Hodnebrog, G Myhre, B Samset, K Alterskjaer, T Andrews, O Boucher, G Faluvegi, D Fläschner, P Forster, M Kasoar, A Kirkevag, J-F Lamarque, D Olivie, T Richardson, D Shawki, D Shindell, KP Shine, Philip Stier, T Takemura, A Voulgarikis, D Watson-Parris

Abstract:

Water vapour in the atmosphere is the source of a major climate feedback mechanism and potential increases in the availability of water vapour could have important consequences for mean and extreme precipitation. Future precipitation changes further depend on how the hydrological cycle responds to different drivers of climate change, such as greenhouse gases and aerosols. Currently, neither the total anthropogenic influence on the hydrological cycle nor that from individual drivers is constrained sufficiently to make solid projections. We investigate how integrated water vapour (IWV) responds to different drivers of climate change. Results from 11 global climate models have been used, based on simulations where CO2, methane, solar irradiance, black carbon (BC), and sulfate have been perturbed separately. While the global-mean IWV is usually assumed to increase by ∼7 % per kelvin of surface temperature change, we find that the feedback response of IWV differs somewhat between drivers. Fast responses, which include the initial radiative effect and rapid adjustments to an external forcing, amplify these differences. The resulting net changes in IWV range from 6.4±0.9 % K−1 for sulfate to 9.8±2 % K−1 for BC. We further calculate the relationship between global changes in IWV and precipitation, which can be characterized by quantifying changes in atmospheric water vapour lifetime. Global climate models simulate a substantial increase in the lifetime, from 8.2±0.5 to 9.9±0.7 d between 1986–2005 and 2081–2100 under a high-emission scenario, and we discuss to what extent the water vapour lifetime provides additional information compared to analysis of IWV and precipitation separately. We conclude that water vapour lifetime changes are an important indicator of changes in precipitation patterns and that BC is particularly efficient in prolonging the mean time, and therefore likely the distance, between evaporation and precipitation.

Analysis of the Atmospheric Water Budget for Elucidating the Spatial Scale of Precipitation Changes Under Climate Change

Geophysical Research Letters American Geophysical Union (AGU) 46:17-18 (2019) 10504-10511

Authors:

Guy Dagan, Philip Stier, Duncan Watson‐Parris

Abstract:

AbstractGlobal mean precipitation changes due to climate change were previously shown to be relatively small and well constrained by the energy budget. However, local precipitation changes can be much more significant. In this paper we propose that for large enough scales, for which the water budget is closed (precipitation [P] roughly equals evaporation [E]), changes in P approach the small global mean value. However, for smaller scales, for which P and E are not necessarily equal and convergence of water vapor still plays a role, changes in P could be much larger due to dynamical contributions. Using 40 years of two reanalysis data sets, 39 Coupled Model Intercomparison Project Phase 5 (CMIP5) models and additional numerical simulations, we identify the scale of transition in the importance of the different terms in the water budget to precipitation to be ~3,500–4,000 km and demonstrate its relation to the spatial scale of precipitation changes under climate change.