Anthropogenic aerosol forcing – insights from multi-estimates from aerosol-climate models with reduced complexity
Atmospheric Chemistry and Physics Discussions Copernicus Publications (2018)
Abstract:
The radiative forcing of anthropogenic aerosol remains a key uncertainty in the understanding of climate change. This study quantifies the model spread in aerosol forcing associated with (i) variability internal to the atmosphere and (ii) differences in the model representation of weather. We do so by performing ensembles of atmosphere-only simulations with four state-of-the-art Earth system models, three of which will be used in the sixth coupled model inter-comparison project (CMIP6, Eyring et al., 2016). In those models we reduce the complexity of the anthropogenic aerosol by prescribing the same annually-repeating patterns of the anthropogenic aerosol optical properties and associated effects on the cloud reflectivity. We quantify a comparably small model spread in the long-term averaged ERF compared to the overall possible range in annual ERF estimates associated with model-internal variability. This implies that identifying the true model spread in ERF associated with differences in the representation of meteorological processes and natural aerosol requires averaging over a sufficiently large number of annual estimates. We characterize the model diversity in clouds and use satellite products as benchmarks. Despite major inter-model differences in natural aerosol and clouds, all models show only a small change in the global-mean ERF due to the substantial change in the global anthropogenic aerosol distribution between the mid-1970s and mid-2000s, the ensemble mean ERF being −0.47Wm−2 for the mid-1970s and −0.51Wm−2 for the mid-2000s. This result suggests that inter-comparing ERF changes between two periods rather than absolute magnitudes relative to pre-industrial might provide a more stringent test for a model's ability for representing climate evolutions.The propagation of aerosol perturbations in convective cloud microphysics
(2018)
Abstract:
On the limits of CALIOP for constraining modelled free‐tropospheric aerosol
Geophysical Research Letters American Geophysical Union (2018)
Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives
Reviews of Geophysics American Geophysical Union 56:2 (2018) 409-453
Abstract:
The cloud droplet number concentration (Nd) is of central interest to improve the understanding of cloud physics and for quantifying the effective radiative forcing by aerosol‐cloud interactions. Current standard satellite retrievals do not operationally provide Nd, but it can be inferred from retrievals of cloud optical depth (τc) cloud droplet effective radius (re) and cloud top temperature. This review summarizes issues with this approach and quantifies uncertainties. A total relative uncertainty of 78 % is inferred for pixel‐level retrievals for relatively homogeneous, optically thick and unobscured stratiform clouds with favorable viewing geometry. The uncertainty is even greater if these conditions are not met. For averages over 1o×1o regions the uncertainty is reduced to 54 % assuming random errors for instrument uncertainties. In contrast, the few evaluation studies against reference in‐situ observations suggest much better accuracy with little variability in the bias. More such studies are required for a better error characterization. Nd uncertainty is dominated by errors in re and, therefore, improvements in re retrievals would greatly improve the quality of the Nd retrievals. Recommendations are made for how this might be achieved. Some existing Nd datasets are compared and discussed, and best practices for the use of Nd data from current passive instruments (e.g., filtering criteria) are recommended. Emerging alternative Nd estimates are also considered. Firstly, new ideas to use additional information from existing and upcoming spaceborne instruments are discussed, and secondly, approaches using high‐quality ground‐based observations are examined.Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes
AIMS Environmental Science AIMS Press 5:3 (2018) 195-215