LtU-ILI: An All-in-One Framework for Implicit Inference in Astrophysics and Cosmology

ArXiv 2402.05137 (2024)

Authors:

Matthew Ho, Deaglan J Bartlett, Nicolas Chartier, Carolina Cuesta-Lazaro, Simon Ding, Axel Lapel, Pablo Lemos, Christopher C Lovell, T Lucas Makinen, Chirag Modi, Viraj Pandya, Shivam Pandey, Lucia A Perez, Benjamin Wandelt, Greg L Bryan

Inside the bubble: exploring the environments of reionisation-era Lyman-α emitting galaxies with JADES and FRESCO⋆

Astronomy & Astrophysics EDP Sciences 682 (2024) a40

Authors:

Joris Witstok, Renske Smit, Aayush Saxena, Gareth C Jones, Jakob M Helton, Fengwu Sun, Roberto Maiolino, Nimisha Kumari, Daniel P Stark, Andrew J Bunker, Santiago Arribas, William M Baker, Rachana Bhatawdekar, Kristan Boyett, Alex J Cameron, Stefano Carniani, Stephane Charlot, Jacopo Chevallard, Mirko Curti, Emma Curtis-Lake, Daniel J Eisenstein, Ryan Endsley, Kevin Hainline, Zhiyuan Ji, Benjamin D Johnson, Tobias J Looser, Erica Nelson, Michele Perna, Hans-Walter Rix, Brant E Robertson, Lester Sandles, Jan Scholtz, Charlotte Simmonds, Sandro Tacchella, Hannah Übler, Christina C Williams, Christopher NA Willmer, Chris Willott

Emergence and cosmic evolution of the Kennicutt–Schmidt relation driven by interstellar turbulence

Astronomy & Astrophysics EDP Sciences 682 (2024) a50

Authors:

Katarina Kraljic, Florent Renaud, Yohan Dubois, Christophe Pichon, Oscar Agertz, Eric Andersson, Julien Devriendt, Jonathan Freundlich, Sugata Kaviraj, Taysun Kimm, Garreth Martin, Sébastien Peirani, Álvaro Segovia Otero, Marta Volonteri, Sukyoung K Yi

Abstract:

The scaling relations between the gas content and star formation rate of galaxies provide useful insights into the processes governing their formation and evolution. We investigated the emergence and the physical drivers of the global Kennicutt-Schmidt (KS) relation at 0:25 ≤ z ≤ 4 in the cosmological hydrodynamic simulation NewHorizon, capturing the evolution of a few hundred galaxies with a resolution down to 34 pc. The details of this relation vary strongly with the stellar mass of galaxies and the redshift. A power-law relation ΣSFR / Σa gas with a ≈ 1:4, like that found empirically, emerges at z ≈ 2..3 for the more massive half of the galaxy population. However, no such convergence is found in the lower-mass galaxies, for which the relation gets shallower with decreasing redshift. At galactic scales, the star formation activity correlates with the level of turbulence of the interstellar medium, quantified by the Mach number, rather than with the gas fraction (neutral or molecular), confirming the conclusions found in previous works. With decreasing redshift, the number of outliers with short depletion times diminishes, reducing the scatter of the KS relation, while the overall population of galaxies shifts toward low densities. Our results, from parsec-scale star formation models calibrated with local Universe physics, demonstrate that the cosmological evolution of the environmental (e.g., mergers) and internal conditions (e.g., gas fractions) conspire to shape the KS relation. This is an illustration of how the interplay of global and local processes leaves a detectable imprint on galactic-scale observables and scaling relations.

Euclid: Improving the efficiency of weak lensing shear bias calibration. Pixel noise cancellation and the response method on trial

Astronomy & Astrophysics EDP Sciences (2024)

Authors:

H Jansen, M Tewes, T Schrabback, N Aghanim, A Amara, S Andreon, N Auricchio, M Baldi, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, VF Cardone, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, G Congedo, L Conversi, Y Copin, L Corcione, F Courbin, HM Courtois, A Da Silva, H Degaudenzi, J Dinis, F Dubath, X Dupac, M Farina, S Farrens, S Ferriol, M Frailis, E Franceschi, M Fumana, S Galeotta, B Gillis, C Giocoli, A Grazian, F Grupp, SVH Haugan, H Hoekstra, W Holmes, F Hormuth, A Hornstrup, P Hudelot, K Jahnke, B Joachimi, S Kermiche, A Kiessling, M Kilbinger, T Kitching, B Kubik, H Kurki-Suonio, S Ligori, PB Lilje, V Lindholm, I Lloro, E Maiorano, O Mansutti, O Marggraf, K Markovic, N Martinet, F Marulli, R Massey, E Medinaceli, S Mei, M Melchior, Y Mellier, M Meneghetti, E Merlin, G Meylan, L Miller, M Moresco, L Moscardini, E Munari, R Nakajima, S-M Niemi, C Padilla, S Paltani, F Pasian, K Pedersen, V Pettorino, S Pires, G Polenta, M Poncet, F Raison, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, E Rossetti, R Saglia, D Sapone, B Sartoris, P Schneider, A Secroun, G Seidel, S Serrano, C Sirignano, G Sirri, J Skottfelt, L Stanco, P Tallada-Crespí, I Tereno, R Toledo-Moreo, F Torradeflot, I Tutusaus, EA Valentijn, L Valenziano, T Vassallo, A Veropalumbo, Y Wang, J Weller, G Zamorani, J Zoubian, C Colodro-Conde, V Scottez

Cosmology from LOFAR Two-metre Sky Survey data release 2: cross-correlation with the cosmic microwave background

Astronomy and Astrophysics EDP Sciences 681 (2024) A105

Authors:

Sj Nakoneczny, David Alonso, M Bilicki, Dj Schwarz, Cl Hale, A Pollo, C Heneka, P Tiwari, J Zheng, M Brüggen, Mj Jarvis, Tw Shimwell

Abstract:

Aims
We combined the LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) second data release (DR2) catalogue with gravitational lensing maps from the cosmic microwave background (CMB) to place constraints on the bias evolution of LoTSS-detected radio galaxies, and on the amplitude of matter perturbations.
Methods
We constructed a flux-limited catalogue from LoTSS DR2, and analysed its harmonic-space cross-correlation with CMB lensing maps from Planck, Cℓgk, as well as its auto-correlation, Cℓgg. We explored the models describing the redshift evolution of the large-scale radio galaxy bias, discriminating between them through the combination of both Cℓgk and Cℓgg. Fixing the bias evolution, we then used these data to place constraints on the amplitude of large-scale density fluctuations, parametrised by σ8.
Results
We report the significance of the Cℓgk signal at a level of 26.6σ. We determined that a linear bias evolution of the form bg(z) = bg,D/D(z), where D(z) is the growth rate, is able to provide a good description of the data, and we measured bg,D = 1.41 ± 0.06 for a sample that is flux limited at 1.5 mJy, for scales ℓ < 250 for Cℓgg, and ℓ < 500 for Cℓgk. At the sample’s median redshift, we obtained b(z = 0.82) = 2.34 ± 0.10. Using σ8 as a free parameter, while keeping other cosmological parameters fixed to the Planck values, we found fluctuations of σ8 = 0.75−0.04+0.05. The result is in agreement with weak lensing surveys, and at 1σ difference with Planck CMB constraints. We also attempted to detect the late-time-integrated Sachs-Wolfe effect with LOFAR data; however, with the current sky coverage, the cross-correlation with CMB temperature maps is consistent with zero. Our results are an important step towards constraining cosmology with radio continuum surveys from LOFAR and other future large radio surveys.