Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra
Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e062
Abstract:
We measured the harmonic-space power spectrum of Galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from to 500. We applied two flux density cuts at and mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18 mJy cut to deviate for due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at 5.5 , irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias and a constant amplitude galaxy bias . By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at mJy ( mJy) with ( ) and a constant amplitude bias with ( ). When is a free parameter for the same models at mJy ( mJy) with the constant model we found ( ), while with the constant amplitude model we measured ( ), respectively. Our results agree at with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.Detection prospects for the GW background of galactic (sub)solar mass primordial black holes
Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:05 (2025) 036
Abstract:
In multi-component dark matter models, a fraction f pbh of the dark matter could be in the form of primordial black holes (PBHs) with (sub)solar masses. Some would have formed binaries that presently trace the Milky Way halo of particle dark matter. We explore the gravitational wave (GW) signal produced by such a hypothetical population of Galactic PBH binaries and assess its detectability by the LISA experiment. For this purpose, we model the formation and evolution of early-type PBH binaries accounting for GW hardening and binary disruption in the Milky Way. Our analysis reveals that the present-day Galactic population of PBH binaries is characterized by very high orbital eccentricities |1-e| ≪ 1. For a PBH mass M pbh ∼ 0.1 - 1M ⊙, this yields a GW background that peaks in the millihertz frequency range where the LISA instrumental noise is minimum. While this signal remains below the LISA detection threshold for viable f pbh ≲ 0.01, future GW observatories such as DECIGO and BBO could detect it if 0.01 ≲ M pbh ≲ 0.1M ⊙. Furthermore, we anticipate that, after 5 years of observations, LISA should be able to detect 𝒪(100) (resp. 𝒪(1)) loud Galactic PBH binaries of mass M pbh ≲ 0.1 - 1M ⊙ with a SNR ≥ 5 if f pbh = 0.01 (resp. f pbh = 0.001). Nonlinear effects not considered here such as mass accretion and dynamical capture could alter these predictions.The Evolutionary Map of the Universe: A new radio atlas for the southern hemisphere sky
(2025)
The kinematic contribution to the cosmic number count dipole
Astronomy & Astrophysics EDP Sciences 697 (2025) a112
Euclid
Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A2