A Million Three-body Binaries Caught by Gaia

The Astrophysical Journal American Astronomical Society 993:2 (2025) 183

Authors:

Dany Atallah, Yonadav Barry Ginat, Newlin C Weatherford

Abstract:

Gaia observations have revealed over a million stellar binary candidates within ∼1 kpc of the Sun, predominantly characterized by orbital separations >103 au and eccentricities >0.7. The prevalence of such wide, eccentric binaries has proven challenging to explain through canonical binary formation channels. However, recent advances in our understanding of three-body binary formation (3BBF)—new binary assembly by the gravitational scattering of three unbound bodies (3UB)—have shown that 3BBF in star clusters can efficiently generate wide, highly eccentric binaries. We further explore this possibility by constructing a semi-analytic model of the Galactic binary population in the solar neighborhood, originating from 3BBF in star clusters and subsequently migrating to the solar neighborhood within a Hubble time. The model relies on 3BBF scattering experiments to determine how the 3BBF rate and resulting binary properties scale with local stellar density, velocity dispersion, and physically motivated limits to 3UB encounters within a clusters’ tidal field. The Galactic star cluster population is modeled by incorporating up-to-date prescriptions for the Galaxy’s star formation history as well as the birth properties and internal evolution of its star clusters. Finally, we account for binary disruption induced by perturbations from stellar interactions before cluster dissolution and the subsequent changes and disruption of binary orbital elements induced by dynamical interactions in the Galactic field. Without any explicit fine-tuning, our model closely reproduces the total number of Gaia’s wide binaries and the separation and eccentricity distributions, suggesting that 3BBF may be an important formation channel for these enigmatic systems.

Large-scale-structure observables in general relativity validated at second order

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 105

Authors:

Antoine Villey, Yonadav Barry Ginat, Vincent Desjacques, Donghui Jeong, Fabian Schmidt

Abstract:

We present a second-order calculation of relativistic large-scale-structure observables in cosmological perturbation theory, specifically the “cosmic rulers and clock”, which are the building-blocks of any other large-scale-structure observable, including galaxy number counts, on large scales. We calculate the scalar rulers (longitudinal perturbation and magnification) and the cosmic clock to second order, using a fully non-linear covariant definition of the observables. We validate our formulæ on three non-trivial space-time metrics: two of them are null tests on metrics which are obtained by applying a gauge transformation to the background space-time, while the third is the “separate universe” curved background, for which we can also compute the observables exactly. We then illustrate the results by evaluating the second-order observables in a simplified symmetric setup. On large scales, they are suppressed over the linear contributions by ∼10-4, while they become comparable to the linear contributions on mildly non-linear scales. The results of this paper form a significant (and the most complicated) part of the relativistic galaxy number density at second order.

MIGHTEE-H  i : The MiM ☆ relation of massive galaxies and the H  i mass function at 0.25 < z < 0.5

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1857

Authors:

Hengxing Pan, Matt J Jarvis, Ian Heywood, Tariq Yasin, Natasha Maddox, Mario G Santos, Maarten Baes, Anastasia A Ponomareva, Sambatriniaina HA Rajohnson

Abstract:

Abstract The relationship between the already formed stellar mass in a galaxy and the gas reservoir of neutral atomic hydrogen, is a key element in our understanding of how gas is turned into stars in galaxy haloes. In this paper, we measure the $M_{\rm H\, \small {\rm i}}-M_{\star }$ relation based on a stellar-mass selected sample at 0.25 < z < 0.5 and the MIGHTEE-H i DR1 spectral data. Using a powerful Bayesian stacking technique, for the first time we are also able to measure the underlying bivariate distribution of H i mass and stellar mass of galaxies with M⋆ > 109.5 M⊙, finding that an asymmetric underlying H i distribution is strongly preferred by our complete samples. We define the concepts of the average of the logarithmic H i mass, $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$, and the logarithmic average of the H i mass, $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$, and find that the difference between $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$ and $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$ can be as large as ∼0.5 dex for the preferred asymmetric H i distribution. We observe shallow slopes in the underlying $M_{\rm H\, \small {\rm i}}-M_{\star }$ scaling relations, suggesting the presence of an upper H i mass limit beyond which a galaxy can no longer retain further H i gas. From our bivariate distribution we also infer the H i mass function at this redshift and find tentative evidence for a decrease of 2-10 times in the co-moving space density of the most H i massive galaxies up to z ∼ 0.5.

MIGHTEE-H  i : the direct detection of neutral hydrogen in galaxies at z > 0.25

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:1 (2025) 193-210

Authors:

Matt J Jarvis, Madalina N Tudorache, I Heywood, Anastasia A Ponomareva, M Baes, Natasha Maddox, Kristine Spekkens, Andreea Vărăşteanu, CL Hale, Mario G Santos, RG Varadaraj, Elizabeth AK Adams, Alessandro Bianchetti, Barbara Catinella, Jacinta Delhaize, M Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan, Amélie Saintonge, Gauri Sharma, O Ivy Wong

Abstract:

ABSTRACT Atomic hydrogen constitutes the gas reservoir from which molecular gas and star formation in galaxies emerges. However, the weakness of the line means it has been difficult to directly detect in all but the very local Universe. Here, we present results from the first search using the MeerKAT International Tiered Extragalactic Exploration (MIGHTEE) Survey for high-redshift ($z>0.25$) H i emission from individual galaxies. By searching for 21-cm emission centred on the position and redshift of optically selected emission-line galaxies we overcome difficulties that hinder untargeted searches. We detect 11 galaxies at $z>0.25$, forming the first sample of $z>0.25$ detections with an interferometer, with the highest redshift detection at $z = 0.3841$. We find they have much larger H i masses than their low-redshift H i-selected counterparts for a given stellar mass. This can be explained by the much larger cosmological volume probed at these high redshifts, and does not require any evolution of the H i mass function. We make the first-ever measurement of the baryonic Tully–Fisher relation (bTFr) with H  i at $z>0.25$ and find consistency with the local bTFr, but with tentative evidence of a flattening in the relation at these redshifts for higher-mass objects. This may signify evolution, in line with predictions from hydrodynamic simulations, or that the molecular gas mass in these high-mass galaxies could be significant. This study paves the way for future studies of H i beyond the local Universe, using both searches targeted at known objects and via pure H i selection.

TiDES: The 4MOST Time Domain Extragalactic Survey

The Astrophysical Journal American Astronomical Society 992:1 (2025) 158

Authors:

C Frohmaier, M Vincenzi, M Sullivan, SF Hönig, M Smith, H Addison, T Collett, G Dimitriadis, RS Ellis, P Gandhi, O Graur, I Hook, L Kelsey, Y-L Kim, C Lidman, K Maguire, L Makrygianni, B Martin, A Möller, RC Nichol, M Nicholl, P Schady, BD Simmons, SJ Smartt

Abstract:

The Time Domain Extragalactic Survey (TiDES) conducted on the 4 m Multi-Object Spectroscopic Telescope will perform spectroscopic follow-up of extragalactic transients discovered in the era of the NSF-DOE Vera C. Rubin Observatory. TiDES will conduct a 5 yr survey, covering >14, 000squaredegrees , and use around 250,000 fibre hours to address three main science goals: (i) spectroscopic observations of >30,000 live transients, (ii) comprehensive follow-up of >200,000 host galaxies to obtain redshift measurements, and (iii) repeat spectroscopic observations of active galactic nuclei to enable reverberation mapping studies. The live spectra from TiDES will be used to reveal the diversity and astrophysics of both normal and exotic supernovae across the luminosity-timescale plane. The extensive host-galaxy redshift campaign will allow exploitation of the larger sample of supernovae and improve photometric classification, providing the largest-ever sample of SNe Ia, capable of a sub-2% measurement of the equation-of-state of dark energy. Finally, the TiDES reverberation mapping experiment of 700–1000 AGN will complement the SN Ia sample and extend the Hubble diagram to z ∼ 2.5.