A 15 Mpc rotating galaxy filament at redshift z = 0.032

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:4 (2025) 4306-4316

Authors:

Madalina N Tudorache, SL Jung, MJ Jarvis, I Heywood, AA Ponomareva, AA Vărăşteanu, N Maddox, T Yasin, M Glowacki

Abstract:

ABSTRACT Understanding the cold atomic hydrogen gas (H i) within cosmic filaments has the potential to pin down the relationship between the low density gas in the cosmic web and how the galaxies that lie within it grow using this material. We report the discovery of a cosmic filament using 14 H i-selected galaxies that form a very thin elongated structure of 1.7 Mpc. These galaxies are embedded within a much larger cosmic web filament, traced by optical galaxies, that spans at least $\sim 15$ Mpc. We find that the spin axes of the H i galaxies are significantly more strongly aligned with the cosmic web filament ($\langle \vert \cos \psi \vert \rangle = 0.64 \pm 0.05$) than cosmological simulations predict, with the optically selected galaxies showing alignment to a lesser degree ($\langle \vert \cos \psi \vert \rangle = 0.55 \pm 0.05$). This structure demonstrates that within the cosmic filament, the angular momentum of galaxies is closely connected to the large-scale filamentary structure. We also find strong evidence that the galaxies are orbiting around the spine of the filament, making this one of the largest rotating structures discovered thus far, and from which we can infer that there is transfer of angular momentum from the filament to the individual galaxies. The abundance of H i galaxies along the filament and the low dynamical temperature of the galaxies within the filament indicates that this filament is at an early evolutionary stage where the imprint of cosmic matter flow on galaxies has been preserved over cosmic time.

On the rapid growth of SMBHs in high-z galaxies: the aftermath of Population III.1 stars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2000

Authors:

Mahsa Sanati, Julien Devriendt, Sergio Martin-Alvarez, Adrianne Slyz, Jonathan C Tan

Abstract:

Abstract Despite the vast amount of energy released by active galactic nuclei (AGN), their role in early galaxy formation and in regulating the growth of supermassive black holes (SMBHs) remains poorly understood. Through new high-resolution zoom-in cosmological simulations, we follow the co-evolution of 105 M⊙ black hole seeds with their host dwarf galaxy. We model ionizing feedback from a Pop III.1 progenitor, applicable to a wide range of internally or externally irradiated SMBH formation scenarios. The simulated suite progressively spans physics ranging from no AGN feedback to more complex setups including thermal, kinetic and radiative feedback – explored for both low and enhanced AGN power. Across all our models, we find that black hole seeds efficiently reach masses of ∼107 M⊙ within a ∼1010 M⊙ halo by z = 8. Although they exhibit notably different mass growth histories, these latter seem unimpeded by the presence of AGN feedback. The simulation including radiative feedback is the most distinct, with super-Eddington episodes driving fast and mass-loaded gas outflows (exceeding 2500 km s−1) up to ∼50 kpc, along with minor stellar mass suppression in the host galaxy. Our measurements are in broad agreement with moderate luminosity quasars recently observed by JWST, producing overmassive black holes (SMBH-to-galaxy mass ratios 0.01 − 1), dynamical masses of ∼109.5 M⊙, stellar masses of ∼108.5 M⊙, and high, though short-lived, Eddington fraction accretion rates. These results advocate for a scenario where AGN feedback allows for rapid SMBH growth during the reionisation era, while driving winds that extend deep into the intergalactic medium – shaping host galaxies as well as more distant surroundings.

The Velocity Field Olympics: Assessing velocity field reconstructions with direct distance tracers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1960

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Abstract:

Abstract The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at z ≲ 0.05, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the fundamental plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions—including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory—we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding S8 = 0.793 ± 0.035. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.

Creating halos with autoregressive multistage networks

Physical Review D American Physical Society (APS) 112:10 (2025) 103503

Authors:

Shivam Pandey, Chirag Modi, Benjamin D Wandelt, Deaglan J Bartlett, Adrian E Bayer, Greg L Bryan, Matthew Ho, Guilhem Lavaux, T Lucas Makinen, Francisco Villaescusa-Navarro

A Million Three-body Binaries Caught by Gaia

The Astrophysical Journal American Astronomical Society 993:2 (2025) 183

Authors:

Dany Atallah, Yonadav Barry Ginat, Newlin C Weatherford

Abstract:

Gaia observations have revealed over a million stellar binary candidates within ∼1 kpc of the Sun, predominantly characterized by orbital separations >103 au and eccentricities >0.7. The prevalence of such wide, eccentric binaries has proven challenging to explain through canonical binary formation channels. However, recent advances in our understanding of three-body binary formation (3BBF)—new binary assembly by the gravitational scattering of three unbound bodies (3UB)—have shown that 3BBF in star clusters can efficiently generate wide, highly eccentric binaries. We further explore this possibility by constructing a semi-analytic model of the Galactic binary population in the solar neighborhood, originating from 3BBF in star clusters and subsequently migrating to the solar neighborhood within a Hubble time. The model relies on 3BBF scattering experiments to determine how the 3BBF rate and resulting binary properties scale with local stellar density, velocity dispersion, and physically motivated limits to 3UB encounters within a clusters’ tidal field. The Galactic star cluster population is modeled by incorporating up-to-date prescriptions for the Galaxy’s star formation history as well as the birth properties and internal evolution of its star clusters. Finally, we account for binary disruption induced by perturbations from stellar interactions before cluster dissolution and the subsequent changes and disruption of binary orbital elements induced by dynamical interactions in the Galactic field. Without any explicit fine-tuning, our model closely reproduces the total number of Gaia’s wide binaries and the separation and eccentricity distributions, suggesting that 3BBF may be an important formation channel for these enigmatic systems.