Gain stabilization for radio intensity mapping using a continuous-wave reference signal
Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 548-554
Abstract:
Stabilizing the gain of a radio astronomy receiver is of great importance for sensitive radio intensity mapping. In this paper we discuss a stabilization method using a continuous-wave reference signal injected into the signal chain and tracked in a single channel of the spectrometer to correct for the gain variations of the receiver. This method depends on the fact that gain fluctuations of the receiver are strongly correlated across the frequency band, which we can show is the case for our experimental set-up. This method is especially suited for receivers with a digital back-end with high spectral resolution and moderate dynamic range. The sensitivity of the receiver is unaltered except for one lost frequency channel. We present experimental results using a new 4–8.5 GHz receiver with a digital back-end that shows substantial reduction of the 1/f noise and the 1/f knee frequency.Methods for pixel domain correction of EB leakage
Physical Review D American Physical Society (APS) 100:2 (2019) 023538
Population estimates for electromagnetically distinguishable supermassive binary black holes
Astrophysical Journal American Astronomical Society 879:2 (2019) 110
Abstract:
Distinguishing the photon output of an accreting supermassive black hole binary system from that of a single supermassive black hole accreting at the same rate is intrinsically difficult because the majority of the light emerges from near the innermost stable orbits of the black holes. However, there are two possible signals that can distinctively mark binaries, both arising from the gap formed in circumbinary accretion flows inside approximately twice the binary separation. One of these is a "notch" cut into the thermal spectra of these systems in the IR/optical/UV, the other a periodically varying excess hard X-ray luminosity whose period is of order the binary orbital period. Using data from detailed galaxy evolution simulations, we estimate the distribution function in mass, mass ratio, and accretion rate for accreting supermassive binary black holes (SMBBHs) as a function of redshift and then transform this distribution function into predicted source counts for these two potential signals. At flux levels >~10−13 erg cm−2 s−1, there may be ~O(102) such systems in the sky, mostly in the redshift range 0.5 <~ z <~ 1. Roughly 10% should have periods short enough (<~5 yr) to detect the X-ray modulation; this is also the period range accessible to Pulsar Timing Array observations.Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope
Nature Reviews Physics Springer Nature 1:7 (2019) 450-462
Black hole – Galaxy correlations in SIMBA
Monthly Notices of the Royal Astronomical Society Oxford University Press 487:4 (2019) 5764-5780