Sensitivity of dark matter haloes to their accretion histories
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 485:2 (2019) 1906-1915
The energetics of starburst-driven outflows at z ∼ 1 from KMOS
Monthly Notices of the Royal Astronomical Society Oxford University Press 487:1 (2019) 381-393
Abstract:
We present an analysis of the gas outflow energetics from KMOS observations of ∼ 529 main-sequence star-forming galaxies at z ∼ 1 using broad, underlying H α and forbidden lines of [N II] and [S II]. Based on the stacked spectra for a sample with median star-formation rates and stellar masses of SFR = 7 M⊙ yr−1 and M⋆ = (1.0 ± 0.1) × 1010 M⊙, respectively, we derive a typical mass outflow rate of M˙wind = 1–4 M⊙ yr−1 and a mass loading of M˙wind / SFR = 0.2–0.4. By comparing the kinetic energy in the wind with the energy released by supernovae, we estimate a coupling efficiency between the star formation and wind energetics of ϵ ∼ 0.03. The mass loading of the wind does not show a strong trend with star-formation rate over the range ∼ 2–20 M⊙ yr−1, although we identify a trend with stellar mass such that dM / dt / SFR ∝ M0.26±0.07⋆. Finally, the line width of the broad H α increases with disc circular velocity with a sub-linear scaling relation FWHMbroad ∝ v0.21 ± 0.05. As a result of this behaviour, in the lowest mass galaxies (M⋆ ≲ 1010 M⊙), a significant fraction of the outflowing gas should have sufficient velocity to escape the gravitational potential of the halo whilst in the highest mass galaxies (M⋆ ≳ 1010 M⊙) most of the gas will be retained, flowing back on to the galaxy disc at later times.New Horizon: On the origin of the stellar disk and spheroid of field galaxies at $z=0.7$
(2019)
From top-hat masking to smooth transitions: P-filter and its application to polarized microwave sky maps
Journal of Cosmology and Astroparticle Physics IOP Publishing 2019:05 (2019) 003-003