Gravitational Turbulence: the Small-Scale Limit of the Cold-Dark-Matter Power Spectrum

(2025)

Authors:

Yonadav Barry Ginat, Michael L Nastac, Robert J Ewart, Sara Konrad, Matthias Bartelmann, Alexander A Schekochihin

Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra

Publications of the Astronomical Society of Australia (2025)

Authors:

K Tanidis, J Asorey, CS Saraf, CL Hale, B Bahr-Kalus, D Parkinson, S Camera, RP Norris, AM Hopkins, M Bilicki, N Gupta

Abstract:

We measured the harmonic-space power spectrum of galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from ℓ = 2 to 500. We applied two flux density cuts at 0.18 and 0.4mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18mJy cut to deviate for ℓ ≥ 250 due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at ∼5.5σ, irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias b(z) = bg and a constant amplitude galaxy bias b(z) = bg/D(z). By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at 0.18mJy (0.4mJy) with bg = 2.32-0.33+0.41 (2.18-0.25+0.17) and a constant amplitude bias with bg = 1.72-0.21+0.31 (1.78-0.15+0.22). When σ8 is a free parameter for the same models at 0.18mJy (0.4mJy) with the constant model we found σ8 = 0.68-0.14+0.16 (0.82 ±0.10), while with the constant amplitude model we measured σ8 = 0.61-0.20+0.18 (0.78-0.09+0.11), respectively. Our results agree at 1σ with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.

HETDEX-LOFAR Spectroscopic Redshift Catalog ∗ ∗ Based on observations obtained with the Hobby–Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen

The Astrophysical Journal American Astronomical Society 978:1 (2024) 101

Authors:

Maya H Debski, Gregory R Zeimann, Gary J Hill, Donald P Schneider, Leah Morabito, Gavin Dalton, Matt J Jarvis, Erin Mentuch Cooper, Robin Ciardullo, Eric Gawiser, Nika Jurlin

Abstract:

We combine the power of blind integral field spectroscopy from the Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) with sources detected by the Low Frequency Array (LOFAR) to construct the HETDEX-LOFAR Spectroscopic Redshift Catalog. Starting from the first data release of the LOFAR Two-metre Sky Survey, including a value-added catalog with photometric redshifts, we extracted 28,705 HETDEX spectra. Using an automatic classifying algorithm, we assigned each object a star, galaxy, or quasar label along with a velocity/redshift, with supplemental classifications coming from the continuum and emission-line catalogs of the internal, fourth data release from HETDEX (HDR4). We measured 9087 new redshifts; in combination with the value-added catalog, our final spectroscopic redshift sample is 9710 sources. This new catalog contains the highest substantial fraction of LOFAR galaxies with spectroscopic redshift information; it improves archival spectroscopic redshifts and facilitates research to determine the [O ii] emission properties of radio galaxies from 0.0 < z < 0.5, and the Lyα emission characteristics of both radio galaxies and quasars from 1.9 < z < 3.5. Additionally, by combining the unique properties of LOFAR and HETDEX, we are able to measure star formation rates (SFRs) and stellar masses. Using the Visible Integral-field Replicable Unit Spectrograph, we measure the emission lines of [O iii], [Ne iii], and [O ii] and evaluate line-ratio diagnostics to determine whether the emission from these galaxies is dominated by active galactic nuclei or star formation and fit a new SFR–L 150MHz relationship.

Bye-bye, Local-in-matter-density Bias: The Statistics of the Halo Field Are Poorly Determined by the Local Mass Density

The Astrophysical Journal Letters American Astronomical Society 977:2 (2024) l44

Authors:

Deaglan J Bartlett, Matthew Ho, Benjamin D Wandelt

Radio galaxies in simba: a MIGHTEE comparison

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:3 (2024) 2873-2890

Authors:

Nicole L Thomas, Imogen H Whittam, Catherine L Hale, Leah K Morabito, Romeel Davé, Matt J Jarvis, Robin HW Cook