The diversity of rotation curves of galaxies in the NewHorizon cosmological simulation
Monthly Notices of the Royal Astronomical Society Oxford University Press 539:4 (2025) 3797-3807
Abstract:
We use the cosmological hydrodynamical simulation NewHorizon to study the effects of the baryonic component on the inner mass profile of dark matter haloes of isolated galaxies (). Dark matter deficits (‘cores’) develop only in galaxies in a narrow range of stellar mass, . The lower stellar mass limit arises because a minimum amount of star formation is required to drive the baryonic outflows that redistribute dark matter and create a core. The upper limit roughly coincides with the total amount of dark matter initially contained within the innermost 2 kpc (), which roughly coincides with the stellar half-mass radius of these dwarfs. This enclosed mass is quite insensitive to the total virial mass of the system. The same upper limit applies to other simulations, like NIHAO and EAGLE-CHT10, despite their rather different galaxy formation efficiencies. This suggests that it is the galaxy total stellar mass that determines when a core is formed, and not the galaxy-to-dark halo mass ratio, as argued in earlier work. This is consistent with a back-of-the-envelope estimate for a SN-induced rate of orbital diffusion. Although NewHorizon dwarfs reproduce the observed diversity of rotation curves better than other simulations, there are significant differences in the gravitational importance of baryons in the inner regions of dwarfs compared to observations. These differences prevent us from concluding that cosmological simulations are currently fully able to account for the observed diversity of rotation curve shapes.On the relationship between the cosmic web and the alignment of galaxies and AGN jets
Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2362-2379
Abstract:
The impact of active galactic nuclei (AGNs) on the evolution of galaxies explains the steep decrease in the number density of the most massive galaxies in the Universe. However, the fuelling of the AGN and the efficiency of this feedback largely depend on their environment. We use data from the Low Frequency Array Two-metre Sky Survey Data Release 2 (DR2), the Dark Energy Spectroscopic Instrument Legacy Imaging Surveys, and the Sloan Digital Sky Survey DR12 to make the first study of the orientations of radio jets and their optical counterpart in relation to the cosmic web environment. We find that close to filaments (), galaxies tend to have their optical major axes aligned with the nearest filaments. On the other hand, radio jets, which are generally aligned perpendicularly to the optical major axis of the host galaxy, show more randomized orientations with respect to host galaxies within of filaments. These results support the scenario that massive galaxies in cosmic filaments grow by numerous mergers directed along the orientation of the filaments while experiencing chaotic accretion of gas on to the central black hole. The AGN-driven jets consequently have a strong impact preferentially along the minor axes of dark matter haloes within filaments. We discuss the implications of these results for large-scale radio jet alignments, intrinsic alignments between galaxies, and the azimuthal anisotropy of the distribution of circumgalactic medium and anisotropic quenching.Uniting the Observed Dynamical Dark Energy Preference with the Discrepancies in Ω m and H 0 across Cosmological Probes
The Astrophysical Journal Letters American Astronomical Society 983:1 (2025) L27
Abstract:
Recent results from Type Ia supernovae, baryon acoustic oscillations (BAOs), and the cosmic microwave background (CMB) indicate (1) potentially discrepant measurements of the matter density Ωm and Hubble constant H0 in the ΛCDM model when analyzed individually and (2) hint of dynamical dark energy in a w0waCDM model when data are combined in a joint analysis. We examine whether underlying dynamical dark energy cosmologies favored by data would result in biases in Ωm and H0 for each probe when analyzed individually under ΛCDM. We generate mock data sets in w0waCDM cosmologies, fit the individual probes under the ΛCDM model, and find that expected biases in Ωm are ∼0.03. Notably, the Ωm differences between probes are consistent with values observed in real data sets. We also observe that mock DESI-BAO data sets generated in the w0wa CDM cosmologies will lead to a biased measurement of H0 higher by ∼1.2 km s−1 Mpc−1 when fitted under ΛCDM, appearing to mildly improve the Hubble tension, but as the true underlying H0 is lower, the tension is in fact worsened. We find that the Ωm discrepancies, the high BAO H0 relative to the CMB, and the joint dynamical dark energy signal are all related effects that could be explained simultaneously with either new physics or new systematics. While it is possible to unite many of the discrepancies seen in recent analyses along a single axis, our results underscore the importance of understanding systematic differences in data sets, as they have unique impacts in different cosmological parameter spaces.E-INSPIRE – I. Bridging the gap with the local Universe: stellar population of a statistical sample of ultra-compact massive galaxies at z < 0.3
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2440-2458
Abstract:
This paper presents the first effort to Extend the Investigation of Stellar Populations In RElics (E-INSPIRE). We present a catalogue of 430 spectroscopically confirmed ultra-compact massive galaxies (UCMGs) from the Sloan Digital Sky Survey at redshifts . This increases the original INSPIRE sample eightfold, bridging the gap with the local Universe. For each object, we compute integrated stellar velocity dispersion, age, metallicity, and [Mg/Fe] through spectroscopic stellar population analysis. We infer star formation histories (SFHs), metallicity evolution histories (MEHs) and compute the Degree of Relicness (DoR) of each object. The UCMGs, covering a wide range of DoR from 0.05 to 0.88, can be divided into three groups, according to how extreme their SFH was. The first group consists of 81 extreme relics () that have formed the totality of their stellar mass by and have super-solar metallicities at all cosmic epochs. The second group () contains 293 objects also characterized by peaked SFHs but with a small percentage of later-formed stars and with a variety of MEHs. The third group (), has 56 objects that cannot be considered relics since they have extended SFHs and formed a non-negligible fraction ( per cent) of their stellar mass at . We conclude that the most efficient method of finding relics is to select UCMGs with a combination of large velocity dispersion values (as already found by INSPIRE), super-solar metallicities and high [Mg/Fe].Witnessing the onset of reionization through Lyman-α emission at redshift 13
Nature Nature Research 639:8056 (2025) 897-901