KMOS: A multi-object deployable-IFU spectrometer for the ESO VLT

NEW ASTRON REV 50:4-5 (2006) 370-373

Authors:

R Sharples, R Bender, R Bennett, K Burch, P Carter, P Clark, R Content, R Davies, R Davies, M Dubbeldam, R Genzel, A Hess, K Laidlaw, M Lehnert, I Lewis, B Muschielok, S Ramsey-Howat, P Rees, D Robertson, I Robson, R Saglia, M Tecza, N Thatte, S Todd, B Wall, M Wegner

Abstract:

We describe the design of a 2nd generation instrument for the ESO VLT which uses 24 cryogenic pickoff arms linked to diamond-machined image slicing integral field units to deliver a unique multiple deployable integral field capability in the near-infrared (1-2.5 mu m). The science requirements for the instrument are presented and linked to the functional specification. The baseline instrument concept is described with emphasis on technological innovations. (c) 2006 Elsevier B.V. All rights reserved.

Orientation dependency of broad-line widths in quasars and consequences for black hole mass estimation

\mnras 369 (2006) 182-188-182-188

Authors:

MJ Jarvis, RJ McLure

Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi-analytic model and cosmological SPH simulations

ArXiv astro-ph/0605750 (2006)

Authors:

Andrea Cattaneo, Jeremy Blaizot, David H Weinberg, Stephane Colombi, Romeel Dave, Julien Devriendt, Bruno Guiderdoni, Neal Katz, Dusan Keres

Abstract:

We compare the galaxy population of an SPH simulation to those predicted by the GalICS semi-analytic model and a stripped down version without supernova and AGN feedback. The SPH simulation and the no-feedback GalICS model make similar predictions for the baryonic mass functions of galaxies and for the dependence of these mass functions on environment and redshift. The two methods also make similar predictions for the galaxy content of dark matter haloes as a function of halo mass and for the gas accretion history of galaxies. Both the SPH and no-feedback GalICS models predict a bimodal galaxy population at z=0. The "red'' sequence of gas poor, old galaxies is populated mainly by satellite systems while, contrary to observations, the central galaxies of massive haloes lie on the "blue'' star-forming sequence as a result of continuing hot gas accretion at late times. Furthermore, both models overpredict the observed baryonic mass function, especially at the high mass end. In the full GalICS model, supernova-driven outflows reduce the masses of low and intermediate mass galaxies by about a factor of two. AGN feedback suppresses gas cooling in large haloes, producing a sharp cut-off in the baryonic mass function and moving the central galaxies of these massive haloes to the red sequence. Our results imply that the observational failings of the SPH simulation and the no-feedback GalICS model are a consequence of missing input physics rather than computational inaccuracies, that truncating gas accretion by satellite galaxies automatically produces a bimodal galaxy distribution with a red sequence, but that explaining the red colours of the most massive galaxies requires a mechanism like AGN feedback that suppresses the accretion onto central galaxies in large haloes.

Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi-analytic model and cosmological SPH simulations

(2006)

Authors:

Andrea Cattaneo, Jeremy Blaizot, David H Weinberg, Stephane Colombi, Romeel Dave, Julien Devriendt, Bruno Guiderdoni, Neal Katz, Dusan Keres

Non-Gaussianity in the Very Small Array CMB maps with Smooth-Goodness-of-fit tests

Mon.Not.Roy.Astron.Soc. 369 (2006) 909-920

Authors:

JA Rubino-Martin, AM Aliaga, RB Barreiro, RA Battye, P Carreira, K Cleary, RD Davies, RJ Davis, C Dickinson, R Genova-Santos, K Grainge, CM Gutierrez, YA Hafez, MP Hobson, ME Jones, R Kneissl, K Lancaster, A Lasenby, JP Leahy, K Maisinger, E Martinez-Gonzalez, GG Pooley, N Rajguru, R Rebolo, JL Sanz, RDE Saunders, RS Savage, A Scaife, P Scott, A Slosar, AC Taylor, D Titterington, E Waldram, RA Watson

Abstract:

(Abridged) We have used the Rayner & Best (1989) smooth tests of goodness-of-fit to study the Gaussianity of the Very Small Array (VSA) data. Out of the 41 published VSA individual pointings dedicated to cosmological observations, 37 are found to be consistent with Gaussianity, whereas four pointings show deviations from Gaussianity. In two of them, these deviations can be explained as residual systematic effects of a few visibility points which, when corrected, have a negligible impact on the angular power spectrum. The non-Gaussianity found in the other two (adjacent) pointings seems to be associated to a local deviation of the power spectrum of these fields with respect to the common power spectrum of the complete data set, at angular scales of the third acoustic peak (l = 700-900). No evidence of residual systematics is found in this case, and unsubstracted point sources are not a plausible explanation either. If those visibilities are removed, a cosmological analysis based on this new VSA power spectrum alone shows no differences in the parameter constraints with respect to our published results, except for the physical baryon density, which decreases by 10 percent. Finally, the method has been also used to analyse the VSA observations in the Corona Borealis supercluster region (Genova-Santos et al. 2005), which show a strong decrement which cannot be explained as primordial CMB. Our method finds a clear deviation (99.82%) with respect to Gaussianity in the second-order moment of the distribution, and which can not be explained as systematic effects. A detailed study shows that the non-Gaussianity is produced in scales of l~500, and that this deviation is intrinsic to the data (in the sense that can not be explained in terms of a Gaussian field with a different power spectrum).