On the evolution of the black-hole/spheroid mass ratio
Astronomische Nachrichten 327:2-3 (2006) 213-216
Abstract:
We present the results of a study which uses the 3CRR sample of radio-loud active galactic nuclei (AGN) to investigate the evolution of the hlack-hole: spheroid relation in the most massive early-type galaxies from 0 < z < 2. Radioloud unification is exploited to obtain virial (line-width) black-hole mass estimates from the 3CRR quasars, and stellar mass estimates from the 3CRR radio galaxies, thereby providing black-hole and stellar mass estimates for a single population of early-type galaxies. At low redshift (z < 1) the 3CRR sample is consistent with a black-hole:spheroid ratio of Mbh/Msph ≃ 0.002, in good agreement with that observed locally for quiescent galaxies of similar stellar mass (Msph ≃ 5 × 10 11M⊙). However, over the redshift interval 0 < z < 2 the 3CRR black-hole:spheroid ratio is found to evolve as M bh/Msph ∝ (1 + z)2-07±0.76, reaching Mbh/Msph ≃ 0.008 by redshift z ≃ 2. This evolution is found to be inconsistent with the local black-hole:spheroid ratio remaining constant at a moderately significant level (98%). If confirmed, the detection of evolution in the 3CRR black-hole:spheroid mass ratio further strengthens the evidence that, at least for massive early-type galaxies, the growth of the central supermassive black hole may be completed before that of the host spheroid. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.GalICS V : Low and high order clustering in mock SDSS's
ArXiv astro-ph/0603821 (2006)
Abstract:
[Abridged] We use mock catalogues based on the GALICS model (Hatton et al. 03) to explore the nature of galaxy clustering observed in the SDSS. We measure low and high order angular clustering statistic from these mock catalogues, after selecting galaxies the same way as for observations, and compare them directly to estimates from SDSS data. Note that we also present measurements of S3-S5 on the SDSS DR1. We find that our model is in general good agreement with observations in the scale/luminosity range where we can trust the predictions. This range is found to be limited (i) by the size of the dark matter simulation used -- which introduces finite volume effects at large scales -- and by the mass resolution of this simulation -- which introduces incompleteness at apparent magnitudes fainter than $r\sim 20$. We then focus on the small scale clustering properties of galaxies and investigate the behaviour of three different prescriptions for positioning galaxies within haloes of dark matter. We show that galaxies are poor tracers both of DM particles or DM sub-structures, within groups and clusters. Instead, SDSS data tells us that the distribution of galaxies lies somewhat in between these two populations. This confirms the general theoretical expectation from numerical simulations and semi-analytic modelling.A photometric redshift of z = 6.39 ± 0.12 for GRB 050904
Nature 440:7081 (2006) 181-183
Abstract:
Gamma-ray bursts (GRBs) and their afterglows are the most brilliant transient events in the Universe. Both the bursts themselves and their afterglows have been predicted to be visible out to redshifts of z ≈ 20, and therefore to be powerful probes of the early Universe1,2. The burst GRB 000131, at z = 4.50, was hitherto the most distant such event identified3. Here we report the discovery of the bright near-infrared afterglow of GRB 050904 (ref. 4). From our measurements of the near-infrared afterglow, and our failure to detect the optical afterglow, we determine the photometric redshift of the burst to be z = 6.39-0.12+0.11 (refs 5-7). Subsequently, it was measured8 spectroscopically to be z = 6.29 ± 0.01, in agreement with our photometric estimate. These results demonstrate that GRBs can be used to trace the star formation, metallicity, and reionization histories of the early Universe. © 2006 Nature Publishing Group.The Fundamental Plane for z = 0.8-0.9 Cluster Galaxies
The Astrophysical Journal American Astronomical Society 639:1 (2006) l9-l12