First insights into the ISM at z > 8 with JWST: possible physical implications of a high [O iii] λ4363/[O iii] λ5007
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 518:1 (2022) 592-603
Propagating spatially varying multiplicative shear bias to cosmological parameter estimation for stage-IV weak-lensing surveys
Monthly Notices of the Royal Astronomical Society Oxford University Press 518:4 (2022) 4909-4920
Abstract:
We consider the bias introduced by a spatially varying multiplicative shear bias (m-bias) on tomographic cosmic shear angular power spectra. To compute the bias in the power spectra, we estimate the mode-coupling matrix associated with an m-bias map using a computationally efficient pseudo-Cℓ method. This allows us to consider the effect of the m-bias to high ℓ. We then conduct a Fisher matrix analysis to forecast resulting biases in cosmological parameters. For a Euclid-like survey with a spatially varying m-bias, with zero mean and rms of 0.01, we find that parameter biases reach a maximum of ∼10 per cent of the expected statistical error, if multipoles up to ℓmax = 5000 are included. We conclude that the effect of the spatially varying m-bias may be a subdominant but potentially non-negligible contribution to the error budget in forthcoming weak lensing surveys. We also investigate the dependence of parameter biases on the amplitude and angular scale of spatial variations of the m-bias field, and conclude that requirements should be placed on the rms of spatial variations of the m-bias, in addition to any requirement on the mean value. We find that, for a Euclid-like survey, biases generally exceed ∼30 per cent of the statistical error for m-bias rms ∼0.02–0.03 and can exceed the statistical error for rms ∼0.04–0.05. This allows requirements to be set on the permissible amplitude of spatial variations of the m-bias that will arise due to systematics in forthcoming weak lensing measurements.Constraints on dark matter annihilation and decay from the large-scale structure of the nearby Universe
Physical Review D 106:10 (2022)
Abstract:
Decaying or annihilating dark matter particles could be detected through gamma-ray emission from the species they decay or annihilate into. This is usually done by modeling the flux from specific dark matter-rich objects such as the Milky Way halo, Local Group dwarfs, and nearby groups. However, these objects are expected to have significant emission from baryonic processes as well, and the analyses discard gamma-ray data over most of the sky. Here we construct full-sky templates for gamma-ray flux from the large-scale structure within ∼200 Mpc by means of a suite of constrained N-body simulations (csiborg) produced using the Bayesian Origin Reconstruction from Galaxies algorithm. Marginalizing over uncertainties in this reconstruction, small-scale structure, and parameters describing astrophysical contributions to the observed gamma-ray sky, we compare to observations from the Fermi Large Area Telescope to constrain dark matter annihilation cross sections and decay rates through a Markov chain Monte Carlo analysis. We rule out the thermal relic cross section for s-wave annihilation for all mχ7 GeV/c2 at 95% confidence if the annihilation produces gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma-ray sky with the same spatial distribution as dark matter decay at 3.3σ. Although this could be due to dark matter decay via these channels with a decay rate Γ≈6×10-28 s-1, we find that a power-law spectrum of index p=-2.75-0.46+0.71, likely of baryonic origin, is preferred by the data.PRISM: A Non-Equilibrium, Multiphase Interstellar Medium Model for Radiation Hydrodynamics Simulations of Galaxies
(2022)
Translators of galaxy morphology indicators between observation and simulation
(2022)