The Highest-Redshift Balmer Breaks as a Test of $Λ$CDM

ArXiv 2305.15459 (2023)

Authors:

Charles L Steinhardt, Albert Sneppen, Thorbjørn Clausen, Harley Katz, Martin P Rey, Jonas Stahlschmidt

Frequency-Domain Distribution of Astrophysical Gravitational-Wave Backgrounds

ArXiv 2305.09372 (2023)

Authors:

Yonadav Barry Ginat, Robert Reischke, Ivan Rapoport, Vincent Desjacques

The Spitzer Extragalactic Representative Volume Survey and DeepDrill extension: clustering of near-infrared galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 523:1 (2023) 251-269

Authors:

Eelco van Kampen, Mark Lacy, Duncan Farrah, Claudia del P Lagos, Matthew Jarvis, Claudia Maraston, Kristina Nyland, Seb Oliver, Jason Surace, Jessica Thorne

Abstract:

We have measured the angular autocorrelation function of near-infrared galaxies in SERVS + DeepDrill, the Spitzer Extragalactic Representative Volume Survey and its follow-up survey of the Deep Drilling Fields, in three large fields totalling over 20 deg2 on the sky, observed in two bands centred on 3.6 and 4.5 μm. We performed this analysis on the full sample as well as on sources selected by [3.6]–[4.5] colour in order to probe clustering for different redshift regimes. We estimated the spatial correlation strength as well, using the redshift distribution from S-COSMOS with the same source selection. The strongest clustering was found for our bluest subsample, with 〈z〉 ∼ 0.7, which has the narrowest redshift distribution of all our subsamples. We compare these estimates to previous results from the literature, but also to estimates derived from mock samples, selected in the same way as the observational data, using deep light-cones generated from the SHARK semi-analytical model of galaxy formation. For all simulated (sub)samples, we find a slightly steeper slope than for the corresponding observed ones, but the spatial clustering length is comparable in most cases.

Spectral age distribution for radio-loud active galaxies in the XMM-LSS field

Monthly Notices of the Royal Astronomical Society Oxford University Press 523:1 (2023) 620-639

Authors:

Siddhant Pinjarkar, Martin J Hardcastle, Jeremy J Harwood, Dharam V Lal, Peter W Hatfield, Matt J Jarvis, Zara Randriamanakoto, Imogen H Whittam

Abstract:

Jets of energetic particles, as seen in FR type-I and FR type-II sources, ejected from the centre of radio-loud AGN affect the sources surrounding the intracluster medium/intergalactic medium. Placing constraints on the age of such sources is important in order to measure the jet powers and determine the effects on feedback. To evaluate the age of these sources using spectral age models, we require high-resolution multiwavelength data. The new sensitive and high-resolution MIGHTEE survey of the XMM-LSS field, along with data from the Low Frequency Array (LOFAR) and the Giant Metrewave Radio Telescope (GMRT) provide data taken at different frequencies with similar resolution, which enables us to determine the spectral age distribution for radio-loud AGN in the survey field. In this study, we present a sample of 28 radio galaxies with their best-fitting spectral age distribution analysed using the Jaffe–Perola (JP) model on a pixel-by-pixel basis. Fits are generally good, and objects in our sample show maximum ages within the range of 2.8 to 115 Myr with a median of 8.71 Myr. High-resolution maps over a range of frequencies are required to observe detailed age distributions for small sources, and high-sensitivity maps will be needed in order to observe fainter extended emission. We do not observe any correlation between the total physical size of the sources and their age, and we speculate that both dynamical models and the approach to spectral age analysis may need some modification to account for our observations.

Inferring dark matter halo properties for H i-selected galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 526:4 (2023) 5861-5882

Authors:

Tariq Yasin, Harry Desmond, Julien Devriendt, Adrianne Slyz

Abstract:

We set constraints on the dark matter halo mass and concentration of ∼22 000 individual galaxies visible both in H I (from the ALFALFA survey) and optical light (from the Sloan Digital Sky Survey). This is achieved by combining two Bayesian models, one for the H I line width as a function of the stellar and neutral hydrogen mass distributions in a galaxy using kinematic modelling, and the other for the galaxy’s total baryonic mass using the technique of inverse subhalo abundance matching. We hence quantify the constraining power on halo properties of spectroscopic and photometric observations, and assess their consistency. We find good agreement between the two sets of posteriors, although there is a sizeable population of low-line width galaxies that favour significantly smaller dynamical masses than expected from abundance matching (especially for cuspy halo profiles). Abundance matching provides significantly more stringent bounds on halo properties than the H I line width, even with a mass–concentration prior included, although combining the two provides a mean gain of 40 per cent for the sample when fitting an NFW profile. We also use our kinematic posteriors to construct a baryonic mass–halo mass relation, which we find to be near power law, and with a somewhat shallower slope than expected from abundance matching. Our method demonstrates the potential of combining photometric and spectroscopic observations to precisely map out the dark matter distribution at the galaxy scale using upcoming H I surveys such as the SKA.