MIGHTEE-Hi: evolution of hi scaling relations of star-forming galaxies at z < 0.5* * released on July 29, 2022

Astrophysical Journal Letters IOP Science 935:1 (2022) L13

Authors:

F Sinigaglia, G Rodighiero, E Elson, M Vaccari, N Maddox, Bs Frank, Mj Jarvis, T Oosterloo, R Davé, M Salvato, M Baes, S Bellstedt, L Bisigello, Jd Collier, Rhw Cook, Ljm Davies, J Delhaize, Sp Driver, C Foster, S Kurapati, Cd Claudia, C Lidman, Pe Mancera Piña, Mj Meyer, Km Mogotsi, H Pan, Aa Ponomareva, I Prandoni, Sha Rajohnson, Asg Robotham, Mg Santos, S Sekhar, K Spekkens, Je Thorne, Jm van der Hulst, Oi Wong

Abstract:

We present the first measurements of H i galaxy scaling relations from a blind survey at z > 0.15. We perform spectral stacking of 9023 spectra of star-forming galaxies undetected in H i at 0.23 < z < 0.49, extracted from MIGHTEE-H i Early Science data cubes, acquired with the MeerKAT radio telescope. We stack galaxies in bins of galaxy properties (stellar mass M *, star formation rateSFR, and specific star formation rate sSFR, with sSFR ≡ M */SFR), obtaining ≳5σ detections in most cases, the strongest H i-stacking detections to date in this redshift range. With these detections, we are able to measure scaling relations in the probed redshift interval, finding evidence for a moderate evolution from the median redshift of our sample z med ∼ 0.37 to z ∼ 0. In particular, low-M * galaxies ( log 10 ( M * / M ⊙ ) ∼ 9 ) experience a strong H i depletion (∼0.5 dex in log 10 ( M H I / M ⊙ ) ), while massive galaxies ( log 10 ( M * / M ⊙ ) ∼ 11 ) keep their H i mass nearly unchanged. When looking at the star formation activity, highly star-forming galaxies evolve significantly in M H I (f H I, where f H I ≡ M H I/M *) at fixed SFR (sSFR), while at the lowest probed SFR (sSFR) the scaling relations show no evolution. These findings suggest a scenario in which low-M * galaxies have experienced a strong H i depletion during the last ∼5 Gyr, while massive galaxies have undergone a significant H i replenishment through some accretion mechanism, possibly minor mergers. Interestingly, our results are in good agreement with the predictions of the simba simulation. We conclude that this work sets novel important observational constraints on galaxy scaling relations.

A galaxy-driven model of type Ia supernova luminosity variations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 515:3 (2022) 4587-4605

Authors:

P Wiseman, M Vincenzi, M Sullivan, L Kelsey, B Popovic, B Rose, D Brout, TM Davis, C Frohmaier, L Galbany, C Lidman, A Möller, D Scolnic, M Smith, M Aguena, S Allam, F Andrade-Oliveira, J Annis, E Bertin, S Bocquet, D Brooks, DL Burke, A Carnero Rosell, M Carrasco Kind, J Carretero, FJ Castander, M Costanzi, MES Pereira, S Desai, HT Diehl, P Doel, S Everett, I Ferrero, D Friedel, J Frieman, J García-Bellido, M Gatti, E Gaztanaga, D Gruen, J Gschwend, G Gutierrez, SR Hinton, DL Hollowood, K Honscheid, DJ James, M March, F Menanteau, R Miquel, R Morgan, A Palmese, F Paz-Chinchón, A Pieres, AA Plazas Malagón, AK Romer, E Sanchez, V Scarpine, I Sevilla-Noarbe, M Soares-Santos, E Suchyta, G Tarle, C To, TN Varga, DES Collaboration

MIGHTEE: the nature of the radio-loud AGN population

Monthly Notices of the Royal Astronomical Society Oxford University Press 516:1 (2022) 245-263

Authors:

Ih Whittam, Mj Jarvis, Cl Hale, M Prescott, Lk Morabito, I Heywood, Nj Adams, J Afonso, Fangxia An, Y Ao, Raa Bowler, Jd Collier, Rp Deane, J Delhaize, B Frank, M Glowacki, Pw Hatfield, N Maddox, L Marchetti, Am Matthews, I Prandoni, S Randriamampandry, Z Randriamanakoto, Djb Smith, Ar Taylor, Nl Thomas, M Vaccari

Abstract:

We study the nature of the faint radio source population detected in the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) Early Science data in the COSMOS field, focusing on the properties of the radio-loud active galactic nuclei (AGNs). Using the extensive multiwavelength data available in the field, we are able to classify 88 per cent of the 5223 radio sources in the field with host galaxy identifications as AGNs (35 per cent) or star-forming galaxies (54 per cent). We select a sample of radio-loud AGNs with redshifts out to z ∼ 6 and radio luminosities 1020 < L1.4 GHz/W Hz−1 < 1027 and classify them as high-excitation and low-excitation radio galaxies (HERGs and LERGs). The classification catalogue is released with this work. We find no significant difference in the host galaxy properties of the HERGs and LERGs in our sample. In contrast to previous work, we find that the HERGs and LERGs have very similar Eddington-scaled accretion rates; in particular we identify a population of very slowly accreting AGNs that are formally classified as HERGs at these low radio luminosities, where separating into HERGs and LERGs possibly becomes redundant. We investigate how black hole mass affects jet power, and find that a black hole mass ≳ 107.8 M is required to power a jet with mechanical power greater than the radiative luminosity of the AGN (Lmech/Lbol > 1). We discuss that both a high black hole mass and black hole spin may be necessary to launch and sustain a dominant radio jet.

Redshift and stellar mass dependence of intrinsic shapes of disc-dominated galaxies from COSMOS observations below z=1.0

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:3 (2022) 3603-3631

Authors:

K Hoffmann, C Laigle, Ne Chisari, P Tallada-Crespi, R Teyssier, Y Dubois, J Devriendt

Abstract:

The high abundance of disc galaxies without a large central bulge challenges predictions of current hydrodynamic simulations of galaxy formation. We aim to shed light on the formation of these objects by studying the redshift and mass dependence of their intrinsic 3D shape distributions in the COSMOS galaxy survey below redshift z = 1.0. This distribution is inferred from the observed distribution of 2D shapes, using a reconstruction method which we test using hydrodynamic simulations. Our tests reveal a moderate bias for the inferred average disc circularity and relative thickness, but a large bias on the dispersion of these quantities. Applying the reconstruction method on COSMOS data, we find variations of the average disc circularity and relative thickness with redshift of around ∼1 per cent and ∼10 per cent, respectively, which is comparable to the error estimates on these quantities. The average relative disc thickness shows a significant mass dependence which can be accounted for by the scaling of disc radius with galaxy mass. We conclude that our data provides no evidence for a strong dependence of the average circularity and absolute thickness of disc-dominated galaxies on redshift and mass that is significant with respect to the statistical uncertainties in our analysis. These findings are expected in the absence of disruptive merging or feedback events that would affect galaxy shapes. They hence support a scenario where present-day discs form early ( z > 1.0) and subsequently undergo a tranquil evolution in isolation. However, more data and a better understanding of systematics are needed to reaffirm our results.

EDGE: the puzzling ellipticity of Eridanus II’s star cluster and its implications for dark matter at the heart of an ultra-faint dwarf

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 515:1 (2022) 185-200

Authors:

Matthew DA Orkney, Justin I Read, Oscar Agertz, Andrew Pontzen, Martin P Rey, Alex Goater, Ethan Taylor, Stacy Y Kim, Maxime Delorme