The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys

Monthly Notices of the Royal Astronomical Society Oxford University Press 505:2 (2021) 3078-3106

Authors:

Jesse van de Sande, Sam P Vaughan, Luca Cortese, Nicholas Scott, Joss Bland-Hawthorn, Scott M Croom, Claudia DP Lagos, Sarah Brough, Julia J Bryant, Julien Devriendt, Yohan Dubois, Francesco D'Eugenio, Caroline Foster, Amelia Fraser-McKelvie, Katherine E Harborne, Jon S Lawrence, Sree Oh, Matt S Owers, Adriano Poci, Rhea-Silvia Remus, Samuel N Richards, Felix Schulze, Sarah M Sweet, Mathew R Varidel, Charlotte Welker

Abstract:

Large galaxy samples from multi-object IFS surveys now allow for a statistical analysis of the z~0 galaxy population using resolved kinematics. However, the improvement in number statistics comes at a cost, with multi-object IFS surveys more severely impacted by the effect of seeing and lower signal-to-noise. We present an analysis of ~1800 galaxies from the SAMI Galaxy Survey and investigate the spread and overlap in the kinematic distributions of the spin parameter proxy $\lambda_{Re}$ as a function of stellar mass and ellipticity. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with $kinemetry$ show considerable overlap in the $\lambda_{Re}$-$\varepsilon_e$ diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in $\lambda_{Re}$ space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the $\lambda_{Re}$-$\log(M_*/M_{\odot})$ distribution. As a function of mass, we investigate whether the data are best fit with a single kinematic distribution or with two. Below $\log(M_*/M_{\odot})$~10.5 a single beta distribution is sufficient to fit the complete $\lambda_{Re}$ distribution, whereas a second beta distribution is required above $\log(M_*/M_{\odot})$~10.5 to account for a population of low-$\lambda_{Re}$ galaxies, presenting the cleanest separation of the two populations. We apply the same analysis to mock-observations from cosmological simulations. The mixture model predicts a bimodal $\lambda_{Re}$ distribution for all simulations, albeit with different positions of the $\lambda_{Re}$ peaks and with different ratios of both populations. Our analysis validates the conclusions from previous, smaller IFS surveys, but also demonstrates the importance of using kinematic selection criteria that are dictated by the quality of the observed or simulated data.

The SAMI Galaxy Survey: stellar population and structural trends across the Fundamental Plane

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 504:4 (2021) 5098-5130

Authors:

Francesco D’Eugenio, Matthew Colless, Nicholas Scott, Arjen van der Wel, Roger L Davies, Jesse van de Sande, Sarah M Sweet, Sree Oh, Brent Groves, Rob Sharp, Matt S Owers, Joss Bland-Hawthorn, Scott M Croom, Sarah Brough, Julia J Bryant, Michael Goodwin, Jon S Lawrence, Nuria PF Lorente, Samuel N Richards

EDGE: two routes to dark matter core formation in ultra-faint dwarfs

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 504:3 (2021) 3509-3522

Authors:

Matthew DA Orkney, Justin I Read, Martin P Rey, Imran Nasim, Andrew Pontzen, Oscar Agertz, Stacy Y Kim, Maxime Delorme, Walter Dehnen

Abstract:

ABSTRACT In the standard Lambda cold dark matter paradigm, pure dark matter simulations predict dwarf galaxies should inhabit dark matter haloes with a centrally diverging density ‘cusp’. This is in conflict with observations that typically favour a constant density ‘core’. We investigate this ‘cusp-core problem’ in ‘ultra-faint’ dwarf galaxies simulated as part of the ‘Engineering Dwarfs at Galaxy formation’s Edge’ project. We find, similarly to previous work, that gravitational potential fluctuations within the central region of the simulated dwarfs kinematically heat the dark matter particles, lowering the dwarfs’ central dark matter density. However, these fluctuations are not exclusively caused by gas inflow/outflow, but also by impulsive heating from minor mergers. We use the genetic modification approach on one of our dwarf’s initial conditions to show how a delayed assembly history leads to more late minor mergers and, correspondingly, more dark matter heating. This provides a mechanism by which even ultra-faint dwarfs ($M_* \lt 10^5\, \text{M}_{\odot }$), in which star formation was fully quenched at high redshift, can have their central dark matter density lowered over time. In contrast, we find that late major mergers can regenerate a central dark matter cusp, if the merging galaxy had sufficiently little star formation. The combination of these effects leads us to predict significant stochasticity in the central dark matter density slopes of the smallest dwarfs, driven by their unique star formation and mass assembly histories.

The first Hubble diagram and cosmological constraints using superluminous supernovae

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 504:2 (2021) 2535-2549

Authors:

C Inserra, M Sullivan, CR Angus, E Macaulay, RC Nichol, M Smith, C Frohmaier, CP Gutiérrez, M Vicenzi, A Möller, D Brout, PJ Brown, TM Davis, CB D’Andrea, L Galbany, R Kessler, AG Kim, Y-C Pan, M Pursiainen, D Scolnic, BP Thomas, P Wiseman, TMC Abbott, J Annis, S Avila, E Bertin, D Brooks, DL Burke, A Carnero Rosell, M Carrasco Kind, J Carretero, FJ Castander, R Cawthon, S Desai, HT Diehl, TF Eifler, DA Finley, B Flaugher, P Fosalba, J Frieman, J Garcia-Bellido, E Gaztanaga, DW Gerdes, T Giannantonio, D Gruen, RA Gruendl, J Gschwend, G Gutierrez, DL Hollowood, K Honscheid, DJ James, E Krause, K Kuehn, N Kuropatkin, TS Li, C Lidman, M Lima, MAG Maia, JL Marshall, P Martini, F Menanteau, R Miquel, AA Plazas Malagón, AK Romer, A Roodman, M Sako, E Sanchez, V Scarpine, M Schubnell, S Serrano, I Sevilla-Noarbe, M Soares-Santos, F Sobreira, E Suchyta, MEC Swanson, G Tarle, D Thomas, DL Tucker, V Vikram, AR Walker, Y Zhang, J Asorey, J Calcino, D Carollo, K Glazebrook, SR Hinton, JK Hoormann, GF Lewis, R Sharp, E Swann, BE Tucker

HI intensity mapping with the MIGHTEE survey: power spectrum estimates

Monthly Notices of the Royal Astronomical Society Oxford University Press 505:2 (2021) 2039-2050

Authors:

Sourabh Paul, Mario G Santos, Junaid Townsend, Matt J Jarvis, Natasha Maddox, Jordan D Collier, Bradley S Frank, Russ Taylor

Abstract:

Intensity mapping (IM) with neutral hydrogen is a promising avenue to probe the large-scale structure of the Universe. In this paper, we demonstrate that using the 64-dish MeerKAT radio telescope as a connected interferometer, it is possible to make a statistical detection of H I in the post-reionization Universe. With the MIGHTEE (MeerKAT International GHz Tiered Extragalactic Exploration) survey project observing in the L-band (856 MHz < ν < 1712 MHz, z < 0.66), we can achieve the required sensitivity to measure the H I IM power spectrum on quasi-linear scales, which will provide an important complementarity to the single-dish IM MeerKAT observations. We present a purpose-built simulation pipeline that emulates the MIGHTEE observations and forecasts the constraints that can be achieved on the H I power spectrum at z = 0.27 for k > 0.3 Mpc−1 using the foreground avoidance method. We present the power spectrum estimates with the current simulation on the COSMOS field that includes contributions from H I, noise, and point-source models constructed from the observed MIGHTEE data. The results from our visibility-based pipeline are in qualitative agreement to the already available MIGHTEE data. This paper demonstrates that MeerKAT can achieve very high sensitivity to detect H I with the full MIGHTEE survey on quasi-linear scales (signal-to-noise ratio >7 at k = 0.49 Mpc−1⁠) that are instrumental in probing cosmological quantities such as the spectral index of fluctuation, constraints on warm dark matter, the quasi-linear redshift space distortions, and the measurement of the H I content of the Universe up to z ∼ 0.5.