Low-frequency radio spectra of submillimetre galaxies in the Lockman Hole

Astronomy and Astrophysics European Southern Observatory 648 (2021) A14

Authors:

J Ramasawmy, Je Geach, Mj Hardcastle, Pn Best, M Bonato, M Bondi, G Calistro Rivera, Rk Cochrane, Je Conway, K Coppin, Kj Duncan, Js Dunlop, M Franco, C Garcia-Vergara, Matt Jarvis, R Kondapally, I McCheyne, I Prandoni, Hja Rottgering, Djb Smith, C Tasse, L Wang

Abstract:

Aims. We investigate the radio properties of a sample of 850 μm-selected sources from the SCUBA-2 Cosmology Legacy Survey (S2CLS) using new deep, low-frequency radio imaging of the Lockman Hole field from the Low Frequency Array. This sample consists of 53 sources, 41 of which are detected at >5σ at 150 MHz.
Methods. Combining these data with additional observations at 324 MHz, 610 MHz, and 1.4 GHz from the Giant Metrewave Radio Telescope and the Jansky Very Large Array, we find a variety of radio spectral shapes and luminosities (L1.4 GHz ranging from ~4 × 1023−1 × 1025) within our sample despite their similarly bright submillimetre flux densities (>4 mJy). We characterise their spectral shapes in terms of multi-band radio spectral indices. Finding strong spectral flattening at low frequencies in ~20% of sources, we investigate the differences between sources with extremely flat low-frequency spectra and those with ‘normal’ radio spectral indices (α > −0.25).
Results. As there are no other statistically significant differences between the two subgroups of our sample as split by the radio spectral index, we suggest that any differences are undetectable in galaxy-averaged properties that we can observe with our unresolved images, and likely relate to galaxy properties that we cannot resolve, on scales ≲1 kpc. We attribute the observed spectral flattening in the radio to free–free absorption, proposing that those sources with significant low-frequency spectral flattening have a clumpy distribution of star-forming gas. We estimate an average spatial extent of absorbing material of at most several hundred parsecs to produce the levels of absorption observed in the radio spectra. This estimate is consistent with the highest-resolution observations of submillimetre galaxies in the literature, which find examples of non-uniform dust distributions on scales of ~100 pc, with evidence for clumps and knots in the interstellar medium. Additionally, we find two bright (>6 mJy) S2CLS sources undetected at all other wavelengths. We speculate that these objects may be very high redshift sources, likely residing at z > 4.

VINTERGATAN III: how to reset the metallicity of the Milky Way

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5868-5876

Authors:

Florent Renaud, Oscar Agertz, Eric P Andersson, Justin I Read, Nils Ryde, Thomas Bensby, Martin P Rey, Diane K Feuillet

Abstract:

ABSTRACT Using the cosmological zoom simulation VINTERGATAN, we present a new scenario for the onset of star formation at the metal-poor end of the low-[α/Fe] sequence in a Milky Way-like galaxy. In this scenario, the galaxy is fuelled by two distinct gas flows. One is enriched by outflows from massive galaxies, but not the other. While the former feeds the inner galactic region, the latter fuels an outer gas disc, inclined with respect to the main galactic plane, and with a significantly poorer chemical content. The first passage of the last major merger galaxy triggers tidal compression in the outer disc, which increases the gas density and eventually leads to star formation, at a metallicity 0.75 dex lower than the inner galaxy. This forms the first stars of the low-[α/Fe] sequence. These in situ stars have halo-like kinematics, similar to what is observed in the Milky Way, due to the inclination of the outer disc that eventually aligns with the inner one via gravitational torques. We show that this tilting disc scenario is likely to be common in Milky Way-like galaxies. This process implies that the low-[α/Fe] sequence is populated in situ, simultaneously from two formation channels, in the inner and the outer galaxy, with distinct metallicities. This contrasts with purely sequential scenarios for the assembly of the Milky Way disc and could be tested observationally.

VINTERGATAN – I. The origins of chemically, kinematically, and structurally distinct discs in a simulated Milky Way-mass galaxy

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5826-5845

Authors:

Oscar Agertz, Florent Renaud, Sofia Feltzing, Justin I Read, Nils Ryde, Eric P Andersson, Martin P Rey, Thomas Bensby, Diane K Feuillet

Abstract:

ABSTRACT Spectroscopic surveys of the Milky Way’s stars have revealed spatial, chemical, and kinematical structures that encode its history. In this work, we study their origins using a cosmological zoom simulation, VINTERGATAN, of a Milky Way-mass disc galaxy. We find that in connection to the last major merger at z ∼ 1.5, cosmological accretion leads to the rapid formation of an outer, metal-poor, low-[α/Fe] gas disc around the inner, metal-rich galaxy containing the old high-[α/Fe] stars. This event leads to a bimodality in [α/Fe] over a range of [Fe/H]. A detailed analysis of how the galaxy evolves since z ∼ 1 is presented. We demonstrate the way in which inside-out growth shapes the radial surface density and metallicity profile and how radial migration preferentially relocates stars from the inner disc to the outer disc. Secular disc heating is found to give rise to increasing velocity dispersions and scale heights with stellar age, which together with disc flaring explains several trends observed in the Milky Way, including shallower radial [Fe/H] profiles above the mid-plane. We show how the galaxy formation scenario imprints non-trivial mappings between structural associations (i.e. thick and thin discs), velocity dispersions, α-enhancements, and ages of stars; e.g. the most metal-poor stars in the low-[α/Fe] sequence are found to have a scale height comparable to old high-[α/Fe] stars. Finally, we illustrate how at low spatial resolution, comparable to the thickness of the galaxy, the proposed pathway to distinct sequences in [α/Fe]–[Fe/H] cannot be captured.

VINTERGATAN – II. The history of the Milky Way told by its mergers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 503:4 (2021) 5846-5867

Authors:

Florent Renaud, Oscar Agertz, Justin I Read, Nils Ryde, Eric P Andersson, Thomas Bensby, Martin P Rey, Diane K Feuillet

Abstract:

ABSTRACT Using the VINTERGATAN cosmological zoom simulation, we explore the contributions of the in situ and accreted material, and the effect of galaxy interactions and mergers in the assembly of a Milky Way-like galaxy. We find that the initial growth phase of galaxy evolution, dominated by repeated major mergers, provides the necessary physical conditions for the assembly of a thick, kinematically hot disc populated by high-[α/Fe] stars, formed both in situ and in accreted satellite galaxies. We find that the diversity of evolutionary tracks followed by the simulated galaxy and its progenitors leads to very little overlap of the in situ and accreted populations for any given chemical composition. At a given age, the spread in [α/Fe] abundance ratio results from the diversity of physical conditions in VINTERGATAN and its satellites, with an enhancement in [α/Fe] found in stars formed during starburst episodes. Later, the cessation of the merger activity promotes the in situ formation of stars in the low-[α/Fe] regime, in a radially extended, thin and overall kinematically colder disc, thus establishing chemically bimodal thin and thick discs, in line with observations. We draw links between notable features in the [Fe/H]-[α/Fe] plane with their physical causes, and propose a comprehensive formation scenario explaining self-consistently, in the cosmological context, the main observed properties of the Milky Way.

Unraveling the origin of magnetic fields in galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 504:2 (2021) 2517–2534

Authors:

Sergio Martin-Alvarez, Harley Katz, Debora Sijacki, Julien Devriendt, Adrianne Slyz

Abstract:

Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out whether magnetic fields observed in galaxies were generated in the early Universe or are of astrophysical nature. Motivated by this, we use our magnetic tracer algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy down to z ∼ 2–1 in four scenarios: magnetized solely by primordial magnetic fields, magnetized exclusively by supernova (SN)-injected magnetic fields, and two combined primordial + SN magnetization cases. We find that once primordial magnetic fields with a comoving strength B0 > 10−12 G are considered, they remain the primary source of galaxy magnetization. Our magnetic tracers show that, even combined with galactic sources of magnetization, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic medium and intergalactic medium can be used to probe B0 without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.