Deep extragalactic visible legacy survey (DEVILS): stellar mass growth by morphological type since z=1

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 505:1 (2021) 136-160

Authors:

Abdolhosein Hashemizadeh, Simon P Driver, Luke JM Davies, Aaron SG Robotham, Sabine Bellstedt, Rogier A Windhorst, Malcolm Bremer, Steven Phillipps, Matt Jarvis, Benne W Holwerda, Claudia del P Lagos, Soheil Koushan, Malgorzata Siudek, Natasha Maddox, Jessica E Thorne, Pascal Elahi

Abstract:

Using high-resolution Hubble Space Telescope imaging data, we perform a visual morphological classification of ∼36 000 galaxies at z < 1 in the deep extragalactic visible legacy survey/cosmological evolution survey region. As the main goal of this study, we derive the stellar mass function (SMF) and stellar mass density (SMD) sub-divided by morphological types. We find that visual morphological classification using optical imaging is increasingly difficult at z > 1 as the fraction of irregular galaxies and merger systems (when observed at rest-frame UV/blue wavelengths) dramatically increases. We determine that roughly two-thirds of the total stellar mass of the Universe today was in place by z ∼ 1. Double-component galaxies dominate the SMD at all epochs and increase in their contribution to the stellar mass budget to the present day. Elliptical galaxies are the second most dominant morphological type and increase their SMD by ∼2.5 times, while by contrast, the pure-disc population significantly decreases by ∼85 per cent⁠. According to the evolution of both high- and low-mass ends of the SMF, we find that mergers and in situ evolution in discs are both present at z < 1, and conclude that double-component galaxies are predominantly being built by the in situ evolution in discs (apparent as the growth of the low-mass end with time), while mergers are likely responsible for the growth of ellipticals (apparent as the increase of intermediate/high-mass end).

The radio galaxy population in the SIMBA simulations

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:3 (2021) 3492-3509

Authors:

Nicole Thomas, Romeel Davé, Matt J Jarvis, Daniel Anglés-Alcázar

Abstract:

We examine the 1.4 GHz radio luminosities of galaxies arising from star formation and active galactic nuclei (AGNs) within the state-of-the-art cosmological hydrodynamic simulation SIMBA. SIMBA grows black holes via gravitational torque limited accretion from cold gas and Bondi accretion from hot gas, and employs AGN feedback including jets at low Eddington ratios. We define a population of radio loud AGNs (RLAGNs) based on the presence of ongoing jet feedback. Within RLAGN, we define high and low excitation radio galaxies (HERGs and LERGs) based on their dominant mode of black hole accretion: torque limited accretion representing feeding from a cold disc, or Bondi representing advection-dominated accretion from a hot medium. SIMBA predicts good agreement with the observed radio luminosity function (RLF) and its evolution, overall as well as separately for HERGs and LERGs. Quiescent galaxies with AGN-dominated radio flux dominate the RLF at ≳1022−23 W Hz−1, while star formation dominates at lower radio powers. Overall, RLAGNs have higher black hole accretion rates and lower star formation rates than non-RLAGN at a given stellar mass or velocity dispersion, but have similar black hole masses. SIMBA predicts an LERG number density of 8.53 Mpc−3, ∼10× higher than for HERGs, broadly as observed. While LERGs dominate among most massive galaxies with the largest black holes and HERGs dominate at high specific star formation rates, they otherwise largely populate similar-sized dark matter haloes and have similar host galaxy properties. SIMBA thus predicts that deeper radio surveys will reveal an increasing overlap between the host galaxy demographics of HERGs and LERGs.

MIGHTEE: are giant radio galaxies more common than we thought?

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 501:3 (2021) 3833-3845

Authors:

J Delhaize, I Heywood, M Prescott, Mj Jarvis, I Delvecchio, Ih Whittam, Sv White, Mj Hardcastle, Cl Hale, J Afonso, Y Ao, M Brienza, M Brueggen, Jd Collier, E Daddi, M Glowacki, N Maddox, Lk Morabito, I Prandoni, Z Randriamanakoto, S Sekhar, Fangxia An, Nj Adams, S Blyth, Raa Bowler, L Leeuw, L Marchetti, Sm Randriamampandry, K Thorat, N Seymour, O Smirnov, Ar Taylor, C Tasse, M Vaccari

GAMA/DEVILS: constraining the cosmic star formation history from improved measurements of the 0.3-2.2 mu m extragalactic background light

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:2 (2021) 2033-2052

Authors:

Soheil Koushan, Simon P Driver, Sabine Bellstedt, Luke J Davies, Aaron SG Robotham, Claudia del P Lagos, Abdolhosein Hashemizadeh, Danail Obreschkow, Jessica E Thorne, Malcolm Bremer, Bw Holwerda, Matt J Jarvis, Andrew M Hopkins, Malgorzata Siudek, Rogier A Windhorst

Abstract:

We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey data sets, in nine multiwavelength filters to measure the COB in the range from 0.35  μm to 2.2  μm. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and γ-ray measurements are now fully consistent to within ∼10 per cent⁠, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the CSFH, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star formation rate lies in the range 0.066–0.076 M⊙ yr−1 Mpc−3 at a lookback time of 9.1 to 10.9 Gyr.

A test of the cosmological principle with quasars

Astrophysical Journal Letters IOP Publishing 908:2 (2021) L51

Authors:

Nathan Secrest, Sebastian Von Hausegger, Mohamed Rameez, Roya Mohayaee, Subir Sarkar, Jacques Colin

Abstract:

We study the large-scale anisotropy of the universe by measuring the dipole in the angular distribution of a flux-limited, all-sky sample of 1.36 million quasars observed by the Wide-field Infrared Survey Explorer (WISE). This sample is derived from the new CatWISE2020 catalog, which contains deep photometric measurements at 3.4 and 4.6 μm from the cryogenic, post-cryogenic, and reactivation phases of the WISE mission. While the direction of the dipole in the quasar sky is similar to that of the cosmic microwave background (CMB), its amplitude is over twice as large as expected, rejecting the canonical, exclusively kinematic interpretation of the CMB dipole with a p-value of 5 × 10−7 (4.9σ for a normal distribution, one-sided), the highest significance achieved to date in such studies. Our results are in conflict with the cosmological principle, a foundational assumption of the concordance ΛCDM model.