Detection prospects for the GW background of galactic (sub)solar mass primordial black holes

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:05 (2025) 036

Authors:

Frans van Die, Ivan Rapoport, Yonadav Barry Ginat, Vincent Desjacques

Abstract:

In multi-component dark matter models, a fraction f pbh of the dark matter could be in the form of primordial black holes (PBHs) with (sub)solar masses. Some would have formed binaries that presently trace the Milky Way halo of particle dark matter. We explore the gravitational wave (GW) signal produced by such a hypothetical population of Galactic PBH binaries and assess its detectability by the LISA experiment. For this purpose, we model the formation and evolution of early-type PBH binaries accounting for GW hardening and binary disruption in the Milky Way. Our analysis reveals that the present-day Galactic population of PBH binaries is characterized by very high orbital eccentricities |1-e| ≪ 1. For a PBH mass M pbh ∼ 0.1 - 1M ⊙, this yields a GW background that peaks in the millihertz frequency range where the LISA instrumental noise is minimum. While this signal remains below the LISA detection threshold for viable f pbh ≲ 0.01, future GW observatories such as DECIGO and BBO could detect it if 0.01 ≲ M pbh ≲ 0.1M ⊙. Furthermore, we anticipate that, after 5 years of observations, LISA should be able to detect 𝒪(100) (resp. 𝒪(1)) loud Galactic PBH binaries of mass M pbh ≲ 0.1 - 1M ⊙ with a SNR ≥ 5 if f pbh = 0.01 (resp. f pbh = 0.001). Nonlinear effects not considered here such as mass accretion and dynamical capture could alter these predictions.

The Evolutionary Map of the Universe: A new radio atlas for the southern hemisphere sky

(2025)

Authors:

AM Hopkins, A Kapinska, J Marvil, T Vernstrom, JD Collier, RP Norris, YA Gordon, SW Duchesne, L Rudnick, N Gupta, E Carretti, CS Anderson, S Dai, G Gürkan, D Parkinson, I Prandoni, S Riggi, CS Saraf, YK Ma, MD Filipović, G Umana, B Bahr-Kalus, BS Koribalski, E Lenc, A Ingallinera, J Afonso, A Ahmad, UT Ahmed, EL Alexander, H Andernach, J Asorey, AJ Battisti, M Bilicki, A Botteon, MJI Brown, M Brüggen, M Cowley, KC Dage, CL Hale, MJ Hardcastle, R Kothes, S Lazarević, Y-T Lin, KJ Luken, JP Moss, J Prathap, SF Rahman, TH Reiprich, CJ Riseley, M Salvato, N Seymour, SS Shabala, DJB Smith, M Vaccari, J Th van Loon, OI Wong, RZE Alsaberi, AD Asher, BD Ball, D Barbosa, N Biava, AC Bradley, R Carvajal, EJ Crawford, TJ Galvin, MT Huynh, DA Leahy, I Matute, VA Moss, C Pappalardo, ZJ Smeaton, V Velović, T Zafar

The kinematic contribution to the cosmic number count dipole

Astronomy & Astrophysics EDP Sciences 697 (2025) a112

Authors:

JD Wagenveld, S von Hausegger, H-R Klöckner, DJ Schwarz

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A2

Authors:

Ms Cropper, A Al-Bahlawan, J Amiaux, S Awan, R Azzollini, K Benson, M Berthe, J Boucher, E Bozzo, C Brockley-Blatt, Gp Candini, C Cara, Ra Chaudery, Re Cole, P Danto, J Denniston, Am Di Giorgio, B Dryer, J-P Dubois, J Endicott, M Farina, E Galli, L Genolet, Jpd Gow, P Guttridge, M Hailey, D Hall, C Harper, H Hoekstra, Ad Holland, B Horeau, D Hu, Re James, A Khalil, R King, T Kitching, R Kohley, C Larcheveque, A Lawrenson, P Liebing, Sj Liu, J Martignac, R Massey, Hj McCracken, L Miller, N Murray, R Nakajima, S-M Niemi, Jw Nightingale, S Paltani

Abstract:

This paper presents the specification, design, and development of the Visible Camera (VIS) on the European Space Agency’s Euclid mission. VIS is a large optical-band imager with a field of view of 0.54 deg2 sampled at 000 . 1 with an array of 609 Megapixels and a spatial resolution of 000 . 18. It will be used to survey approximately 14 000 deg2 of extragalactic sky to measure the distortion of galaxies in the redshift range z = 0.1–1.5 resulting from weak gravitational lensing, one of the two principal cosmology probes leveraged by Euclid. With photometric redshifts, the distribution of dark matter can be mapped in three dimensions, and the extent to which this has changed with look-back time can be used to constrain the nature of dark energy and theories of gravity. The entire VIS focal plane will be transmitted to provide the largest images of the Universe from space to date, specified to reach mAB ≥ 24.5 with a signal-to-noise ratio S/N ≥ 10 in a single broad IE ≃ (r + i + z) band over a six-year survey. The particularly challenging aspects of the instrument are the control and calibration of observational biases, which lead to stringent performance requirements and calibration regimes. With its combination of spatial resolution, calibration knowledge, depth, and area covering most of the extra-Galactic sky, VIS will also provide a legacy data set for many other fields. This paper discusses the rationale behind the conception of VIS and describes the instrument design and development, before reporting the prelaunch performance derived from ground calibrations and brief results from the in-orbit commissioning. VIS should reach fainter than mAB = 25 with S/N ≥ 10 for galaxies with a full width at half maximum of 000 . 3 in a 100 . 3 diameter aperture over the Wide Survey, and mAB ≥ 26.4 for a Deep Survey that will cover more than 50 deg2. The paper also describes how the instrument works with the Euclid telescope and survey, and with the science data processing, to extract the cosmological information.

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A5

Authors:

Fj Castander, P Fosalba, J Stadel, D Potter, J Carretero, P Tallada-Crespí, L Pozzetti, M Bolzonella, Ga Mamon, L Blot, K Hoffmann, M Huertas-Company, P Monaco, Ej Gonzalez, G De Lucia, C Scarlata, M-A Breton, L Linke, C Viglione, S-S Li, Z Zhai, Z Baghkhani, K Pardede, C Neissner, R Teyssier, M Crocce, I Tutusaus, L Miller, G Congedo, A Biviano, M Hirschmann, A Pezzotta, H Aussel, H Hoekstra, T Kitching, Wj Percival, L Guzzo, Y Mellier, Pa Oesch, Raa Bowler, S Bruton, V Allevato, V Gonzalez-Perez, M Manera, S Avila, A Kovács, N Aghanim, B Altieri, A Amara, L Amendola

Abstract:

We present the Flagship galaxy mock, a simulated catalogue of billions of galaxies designed to support the scientific exploitation of the Euclid mission. Euclid is a medium-class mission of the European Space Agency optimised to determine the properties of dark matter and dark energy on the largest scales of the Universe. It probes structure formation over more than 10 billion years primarily from the combination of weak gravitational lensing and galaxy clustering data. The breadth of Euclid’s data will also foster a wide variety of scientific analyses. The Flagship simulation was developed to provide a realistic approximation to the galaxies that will be observed by Euclid and used in its scientific exploitation. We ran a state-of-the-art N-body simulation with four trillion particles, producing a lightcone on the fly. From the dark matter particles, we produced a catalogue of 16 billion haloes in one octant of the sky in the lightcone up to redshift z = 3. We then populated these haloes with mock galaxies using a halo occupation distribution and abundance-matching approach, calibrating the free parameters of the galaxy mock against observed correlations and other basic galaxy properties. Modelled galaxy properties include luminosity and flux in several bands, redshifts, positions and velocities, spectral energy distributions, shapes and sizes, stellar masses, star formation rates, metallicities, emission line fluxes, and lensing properties. We selected a final sample of 3.4 billion galaxies with a magnitude cut of HE < 26, where we are complete. We have performed a comprehensive set of validation tests to check the similarity to observational data and theoretical models. In particular, our catalogue is able to closely reproduce the main characteristics of the weak lensing and galaxy clustering samples to be used in the mission main cosmological analysis. Moreover, given its depth and completeness, this new galaxy mock also provides the community with a powerful tool for developing a wide range of scientific analyses beyond the Euclid mission.