Telling twins apart: Exo-Earths and Venuses with transit spectroscopy

(2016)

Authors:

Joanna K Barstow, Suzanne Aigrain, Patrick GJ Irwin, Sarah Kendrew, Leigh N Fletcher

Isotopic Ratios of Carbon and Oxygen in Titan's CO using ALMA

(2016)

Authors:

Joseph Serigano, Conor A Nixon, Martin A Cordiner, Patrick GJ Irwin, Nicholas A Teanby, Steven B Charnley, Johan E Lindberg

ROTATION AND WINDS OF EXOPLANET HD 189733 b MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY

The Astrophysical Journal American Astronomical Society 817:2 (2016) 106

Authors:

M Brogi, RJ de Kok, S Albrecht, IAG Snellen, JL Birkby, H Schwarz

Probing Saturn's tropospheric cloud with Cassini/VIMS

Icarus Elsevier 271 (2016) 400-417

Authors:

Joanna Eberhardt, P Irwin, L Fletcher, R Giles, C Merlet, Joanna Barstow

Abstract:

In its decade of operation the Cassini mission has allowed us to look deep into Saturn’s atmosphere and investigate the processes occurring below its enshrouding haze. We use Visual and Infrared Mapping Spectrometer (VIMS) 4.6—5.2 µm data from early in the mission to investigate the location and properties of Saturn’s cloud structure between 0.6 and 5 bars. We average nightside spectra from 2006 over latitude circles and model the spectral limb darkening using the NEMESIS radiative transfer and retrieval tool. We present our best-fit deep cloud model for latitudes −40◦ < λ < 50◦ , along with retrieved abundances for NH3, PH3 and AsH3. We find an increase in NH3 abundance at the equator, a cloud base at ∼2.3 bar and no evidence for cloud particles with strong absorption features in the 4.6—5.2 µm wavelength range, all of which are consistent with previous work. Non-scattering cloud models assuming a composition of either NH3 or NH4SH, with a scattering haze overlying, fit limb darkening curves and spectra at all latitudes well; the retrieved optical depth for the tropospheric haze is decreased in the northern (winter) hemisphere, implying that the haze has a photochemical origin. Our ability to test this hypothesis by examining spectra at different seasons is restricted by the varying geometry of VIMS observations over the life of the mission, and the appearance of the Saturn storm towards the end of 2010.

Time variability of Neptune’s horizontal and vertical cloud structure revealed by VLT/SINFONI and Gemini/NIFS from 2009 to 2013

Icarus Elsevier 271 (2016) 418-437

Authors:

Patrick Irwin, Leigh N Fletcher, Dane Tice, Stephanie J Owen, Glenn S Orton, Nicholas A Teanby, Gary R Davis

Abstract:

New observations of Neptune’s clouds in the near infrared were acquired in October 2013 with SINFONI on ESO’s Very Large Telescope (VLT) in Chile. SINFONI is an Integral Field Unit spectrometer returning a 64 × 64 pixel image with 2048 wavelengths. Image cubes in the J-band (1.09 – 1.41 μm) and H-band (1.43 – 1.87 μm) were obtained at spatial resolutions of 0.1″and 0.025″per pixel, while SINFONI’s adaptive optics provided an effective resolution of approximately 0.1″. Image cubes were obtained at the start and end of three successive nights to monitor the temporal development of discrete clouds both at short timescales (i.e. during a single night) as well as over the longer period of the three-day observing run. These observations were compared with similar H-band observations obtained in September 2009 with the NIFS Integral Field Unit spectrometer on the Gemini-North telescope in Hawaii, previously reported by Irwin et al., Icarus 216, 141-158, 2011, and previously unreported Gemini/NIFS observations at lower spatial resolution made in 2011.

We find both similarities and differences between these observations, spaced over four years. The same overall cloud structure is seen with high, bright clouds visible at mid-latitudes (30 – 40°N,S), with slightly lower clouds observed at lower latitudes, together with small discrete clouds seen circling the pole at a latitude of approximately 60°S. However, while discrete clouds were visible at this latitude at both the main cloud deck level (at 2–3 bars) and in the upper troposphere (100–500mb) in 2009, no distinct deep (2–3 bar), discrete circumpolar clouds were visible in 2013, although some deep clouds were seen at the southern edge of the main cloud belt at 30–40°S, which have not been observed before. The nature of the deep sub-polar discrete clouds observed in 2009 is intriguing. While it is possible that in 2013 these deeper clouds were masked by faster moving, overlying features, we consider that it is unlikely that this should have happened in 2013, but not in 2009 when the upper-cloud activity was generally similar. Meanwhile, the deep clouds seen at the southern edge of the main cloud belt at 30 – 40°S in 2013, should also have been detectable in 2009, but were not seen. Hence, these observations may have detected a real temporal variation in the occurrence of Neptune’s deep clouds, pointing to underlying variability in the convective activity at the pressure of the main cloud deck at 2–3 bars near Neptune’s south pole and also in the main observable cloud belt at 30 – 40°S.