The solar reflected component in Jupiter's 5-μm spectra from NIMS/Galileo observations

Journal of Geophysical Research: Planets 103:E10 (1998) 23043-23049

Authors:

P Drossart, M Roos-Serote, T Encrenaz, E Lellouch, KH Baines, RW Carlson, LW Kamp, GS Orton, S Calcutt, P Irwin, FW Taylor, A Weir

Abstract:

A comparison between low-flux dayside and nightside spectra of Jupiter recorded by the Galileo near-infrared mapping spectrometer (NIMS) experiment gives the first accurate estimate of the solar reflected component at 5 μm, in the equatorial zone of Jupiter. A minimum flux level of about 0.6 μW cm-2 sr-1V/μm is found on the dayside, compared with 0.1 /μW cm-2 sr-1/μm on the nightside. These fluxes are 100-800 times lower respectively than the bright 5-μm thermal emission in the north equatorial belt (NEB) hot spots. The day/night difference can be interpreted as a solar reflected component from a cloud, presumably the ammonia cloud, with an albedo of the order of 15%, located at a pressure level of 0.79 bar or at higher altitudes (corresponding to cloud temperature of 160 K or lower). Compared to the measurements in hot spots made at other wavelengths from ground-based observations and from NIMS real time spectra, they imply a high cloud opacity in cold regions at atmospheric levels where the cloud optical depth in the hot spots is very low. The residual flux on the nightside arises from (1) a very small cloud transparency giving some access to deeper thermal emission or (2) as high-resolution solid-state imaging (SSI) images of Galileo suggest, to cloud inhomogeneities, with clearer regions of medium brightness temperatures, mixed with dark regions of much lower thermal emission. If the former have the same brightness as a typical hot spot, a filling factor of a few percent is sufficient to explain the observed flux level on the nightside cold regions. Copyright 1998 by the American Geophysical Union.

Near-IR Spectroscopy of the Atmosphere of Jupiter

Highlights of Astronomy Cambridge University Press (CUP) 11:2 (1998) 1050-1053

Authors:

RW Carlson, KH Baines, T Encrenaz, P Drossart, M Roos-Serote, FW Taylor, P Irwin, A Weir, P Smith, S Calcutt

Near-IR Spectroscopy of the Atmosphere of Jupiter

Chapter in Highlights of Astronomy, Springer Nature (1998) 1050-1053

Authors:

RW Carlson, KH Baines, T Encrenaz, P Drossart, M Roos-Serote, FW Taylor, P Irwin, A Weir, P Smith, S Calcutt

SINFONI: A near infrared AO assisted integral field spectrometer for the VLT

P SOC PHOTO-OPT INS 3353 (1998) 704-715

Authors:

N Thatte, M Tecza, F Eisenhauer, S Mengel, A Krabbe, S Pak, R Genzel, D Bonaccini, E Emsellem, F Rigaut, B Delabre, G Monnet

Abstract:

SINFONI, the SINgle Faint Object Near-infrared Investigation, is an instrument for the Very Large Telescope (VLT), designed to provide spectroscopy at the telescope diffraction limit in the near-infrared. This unique capability is achieved by combining two state-of-the-art developments, an integral field spectrometer (SPIFFI) and a curvature sensor based adaptive optics system (MACAO). SINFONI is a collaborative effort by the Max-Planck-Institut fur extraterrestrische Physik (MPE) and the European Southern Observatory (ESO).SINFONI will operate at the Cassegrain focus of Unit Telescope 1 (UT1) of the VLT, in conjunction with a Laser Guide Star (LGS) for almost complete sky coverage. It will provide integral field data cubes, with a hexagonal field of view ranging from similar to 1 " to 8 ", with corresponding pixel sizes of 0." 03 to 0." 25. The field of view contains 1024 spatial pixels, with similar to 100% filling factor in the focal plane. Spectra are obtained for each of the 1024 pixels. Spectral resolutions of R=2000 to R=4500 will be available, covering the J, H and K spectral windows. The high spectral resolution made will allow software OH suppression in the J and H bands. The detector is a 1024(2) HgCdTe HAWAII array from Rockwell. Spectroscopy of faint objects (m(K) < 21 and m(H) < 22) will be easily feasible.

SINFONI: a high-resolution near-infrared imaging spectrometer for the VLT

ASTR SOC P 152 (1998) 271-281

Authors:

M Tecza, N Thatte

Abstract:

The SINFONI1 project combines the MPE cryogenic near-infrared imaging spectrometer SPIFFI2 with an ESO adaptive-optics system on the ESO-VLT to perform high spatial and spectral resolution studies of compact objects. This paper describes the optical design of SPIFFI and the novel techniques used in building its integral-field unit.The image slicer comprises of a bundle of 1024 silica/silica fibers, where each fiber tip is flared to increase the core diameter by a factor of 15. The tapered end is polished to form a spherical microlens with a hexagonal cross-section to couple Light into the optical fiber. This not only yields a high light-coupling efficiency and a high geometrical filling factor but also allows us to use the fiber bundle at a working temperature of 77 K without losing positioning accuracy.