DETECTION OF MOLECULAR ABSORPTION IN THE DAYSIDE OF EXOPLANET 51 PEGASI b?

The Astrophysical Journal American Astronomical Society 767:1 (2013) 27

Authors:

M Brogi, IAG Snellen, RJ de Kok, S Albrecht, JL Birkby, EJW de Mooij

A sensitivity analysis of the WFCAM Transit Survey for short-period giant planets around M dwarfs

(2013)

Authors:

Gábor Kovács, S Hodgkin, B Sipőcz, D Pinfield, D Barrado, J Birkby, M Cappetta, P Cruz, J Koppenhoefer, E Martín, F Murgas, B Nefs, R Saglia, J Zendejas

Uranus' cloud particle properties and latitudinal methane variation from IRTF SpeX observations

Icarus 223:2 (2013) 684-698

Authors:

DS Tice, PGJ Irwin, LN Fletcher, NA Teanby, J Hurley, GS Orton, GR Davis

Abstract:

The Uranian atmosphere was observed in August 2009 from 0.8 to 1.8. μm using the near-infrared spectrometer, SpeX, at NASA's Infrared Telescope Facility. The observations had a spectral resolution of R=. 1200 and an average seeing of between 0.5' in the H-Band (1.4-1.8. μm) and 0.6' in the I-Band (0.8-0.9. μm). The reduced data were analyzed with a multiple-scattering retrieval code. We were able to reproduce observations when using a vertically-compact cloud in the upper troposphere and a vertically-extended, optically-thin haze above the 1-bar level. The existence of these two clouds is consistent with previous studies.The sub-micron portion of the data are most sensitive to very small scattering particles, allowing more insight into particle size than other portions of the infrared spectrum. This portion of the spectrum was therefore of particular interest and was not available in most previous studies of the planet. We assumed the particles in both clouds to be relatively strong forward scatterers (with a Henyey-Greenstein asymmetry factor of g=. 0.7). Given this assumption, we found single-scattering albedos in the tropospheric cloud particles to be ω̄=0.7 at wavelengths above 1.4. μm and to gradually increase to ω̄=1.0 at wavelengths shortward of 1.0. μm. In the upper haze, we found single-scattering albedos to be ω̄=1.0 with the exception of a narrow drop at 1.0. μm to ω̄=0.6. We found a preference for upper haze particle radii at r=. 0.10. μm. Retrievals of base pressure, fractional scale height, and optical depth in both cloud layers showed the best agreement with data when the base pressure of the upper haze was fixed just above the tropospheric clouds, rather than at or above the tropopausal cold trap. We found that these same retrievals strongly preferred tropospheric cloud particles of 1.35-μm radii, and observed cloud top height to increase away from the equator in the case of latitudinally invariant methane abundance.Latitudinal methane variability was also considered, both through a reflectivity study at the 825-nm collision-induced hydrogen absorption feature, as well as through radiative transfer analysis, using forward modeling and retrievals of cloud properties and methane abundance. The data suggested that methane abundance above the tropospheric clouds increased when moving from the midlatitudes towards the equator by at least 9%. The peak of this equatorial methane enrichment was determined to be at 4. ±. 2° S latitude, having moved nearly 15° northward since a reflectance study of 2002 data (Karkoschka and Tomasko, 2009). © 2013 Elsevier Inc.

On the potential of the EChO mission to characterize gas giant atmospheres

MNRAS 430 (2013) 1188-1207-1188-1207

Authors:

JK Barstow, S Aigrain, PGJ Irwin, N Bowles, LN Fletcher, J-M Lee

Spectral fingerprints of earth-like planets around FGK stars

Astrobiology Mary Ann Liebert 13:3 (2013) 251-269

Authors:

S Rugheimer, L Kaltenegger, A Zsom, A Segura, D Sasselov

Abstract:

We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl.

The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed.

We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.