EChO

Experimental Astronomy Springer Nature 34:2 (2012) 311-353

Authors:

G Tinetti, JP Beaulieu, T Henning, M Meyer, G Micela, I Ribas, D Stam, M Swain, O Krause, M Ollivier, E Pace, B Swinyard, A Aylward, R van Boekel, A Coradini, T Encrenaz, I Snellen, MR Zapatero-Osorio, J Bouwman, JY-K Cho, V Coudé de Foresto, T Guillot, M Lopez-Morales, I Mueller-Wodarg, E Palle, F Selsis, A Sozzetti, PAR Ade, N Achilleos, A Adriani, CB Agnor, C Afonso, C Allende Prieto, G Bakos, RJ Barber, M Barlow, V Batista, P Bernath, B Bézard, P Bordé, LR Brown, A Cassan, C Cavarroc, A Ciaravella, C Cockell, A Coustenis, C Danielski, L Decin, R De Kok, O Demangeon, P Deroo, P Doel, P Drossart, LN Fletcher, M Focardi, F Forget, S Fossey, P Fouqué, J Frith, M Galand, P Gaulme, JI González Hernández, O Grasset, D Grassi, JL Grenfell, MJ Griffin, CA Griffith, U Grözinger, M Guedel, P Guio, O Hainaut, R Hargreaves, PH Hauschildt, K Heng, D Heyrovsky, R Hueso, P Irwin, L Kaltenegger, P Kervella, D Kipping, TT Koskinen, G Kovács, A La Barbera, H Lammer, E Lellouch, G Leto, M Lopez Morales, MA Lopez Valverde, M Lopez-Puertas, C Lovis, A Maggio, JP Maillard, J Maldonado Prado, JB Marquette, FJ Martin-Torres, P Maxted, S Miller, S Molinari, D Montes, A Moro-Martin, JI Moses, O Mousis, N Nguyen Tuong, R Nelson, GS Orton, E Pantin, E Pascale, S Pezzuto, D Pinfield, E Poretti, R Prinja, L Prisinzano, JM Rees, A Reiners, B Samuel, A Sánchez-Lavega, J Sanz Forcada, D Sasselov, G Savini, B Sicardy, A Smith, L Stixrude, G Strazzulla, J Tennyson, M Tessenyi, G Vasisht, S Vinatier, S Viti, I Waldmann, GJ White, T Widemann, R Wordsworth, R Yelle, Y Yung, SN Yurchenko

Rocky exoplanet characterization and atmospheres

International Journal of Astrobiology Cambridge University Press (CUP) 11:4 (2012) 297-307

Authors:

L Kaltenegger, Y Miguel, S Rugheimer

An oxford swift integral field spectroscopy study of 14 early-type galaxies in the coma cluster

Monthly Notices of the Royal Astronomical Society 425:2 (2012) 1521-1526

Authors:

N Scott, R Houghton, RL Davies, M Cappellari, N Thatte, F Clarke, M Tecza

Abstract:

As a demonstration of the capabilities of the new Oxford SWIFT integral field spectrograph, we present first observations for a set of 14 early-type galaxies in the core of the Coma cluster. Our data consist of I- and z-band spatially resolved spectroscopy obtained with the Oxford SWIFT spectrograph, combined with r-band photometry from the Sloan Digital Sky Survey archive for 14 early-type galaxies. We derive spatially resolved kinematics for all objects from observations of the calcium triplet absorption features at ∼8500Å. Using this kinematic information we classify galaxies as either fast rotators or slow rotators. We compare the fraction of fast and slow rotators in our sample, representing the densest environment in the nearby Universe, to results from the ATLAS3D survey, finding that the slow rotator fraction is ∼50per cent larger in the core of the Coma cluster than in the volume-limited ATLAS3D sample, a 1.2σ increase given our selection criteria. Comparing our sample to the Virgo cluster core only (which is 24 times less dense than the Coma core) we find no evidence of an increase in the slow rotator fraction. Combining measurements of the effective velocity dispersion σe with the photometric data we determine the Fundamental Plane for our sample of galaxies. We find that the use of the average velocity dispersion within 1 effective radius, σe, reduces the residuals by 13per cent with respect to comparable studies using central velocity dispersions, consistent with other recent integral field Fundamental Plane determinations. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Four ultra-short-period eclipsing M-dwarf binaries in the WFCAM Transit Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 425:2 (2012) 950-968

Authors:

SV Nefs, JL Birkby, IAG Snellen, ST Hodgkin, DJ Pinfield, B Sipőcz, G Kovacs, D Mislis, RP Saglia, J Koppenhoefer, P Cruz, D Barrado, EL Martin, N Goulding, H Stoev, J Zendejas, C del Burgo, M Cappetta, YV Pavlenko

Cumulative carbon as a policy framework for achieving climate stabilization.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 370:1974 (2012) 4365-4379

Authors:

H Damon Matthews, Susan Solomon, Raymond Pierrehumbert

Abstract:

The primary objective of the United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at a level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternative framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO(2) concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO(2) emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions owing to the much longer atmospheric residence time of CO(2) relative to other major climate forcing agents.