Climate of the Neoproterozoic

Annual Review of Earth and Planetary Sciences Annual Reviews 39:1 (2011) 417-460

Authors:

RT Pierrehumbert, DS Abbot, A Voigt, D Koll

Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

Climate of the Past Copernicus Publications 7:1 (2011) 249-263

Authors:

A Voigt, DS Abbot, RT Pierrehumbert, J Marotzke

The gemini nici planet-finding campaign: Discovery of a substellar L dwarf companion to the nearby young M dwarf CD-35 2722

Astrophysical Journal 729:2 (2011)

Authors:

Z Wahhaj, MC Liu, BA Biller, F Clarke, EL Nielsen, LM Close, T Hayward, EE Mamajek, M Cushing, T Dupuy, M Tecza, N Thatte, M Chun, C Ftaclas, M Hartung, IN Reid, EL Shkolnik, SHP Alencar, P Artymowicz, A Boss, E De Gouveia Dal Pino, J Gregorio-Hetem, S Ida, M Kuchner, DNC Lin, DW Toomey

Abstract:

We present the discovery of a wide (67AU) substellar companion to the nearby (21pc) young solar-metallicity M1 dwarf CD-35 2722, a member of the ≈100Myr AB Doradus association. Two epochs of astrometry from the NICI Planet-Finding Campaign confirm that CD-35 2722B is physically associated with the primary star. Near-IR spectra indicate a spectral type of L4 ± 1 with a moderately low surface gravity, making it one of the coolest young companions found to date. The absorption lines and near-IR continuum shape of CD-35 2722B agree especially well the dusty field L4.5 dwarf 2MASS J22244381-0158521, while the near-IR colors and absolute magnitudes match those of the 5Myr old L4 planetary-mass companion, 1RXS J160929.1-210524 b. Overall, CD-35 2722B appears to be an intermediate-age benchmark for L dwarfs, with a less peaked H-band continuum than the youngest objects and near-IR absorption lines comparable to field objects. We fit Ames-Dusty model atmospheres to the near-IR spectra and find T eff= 1700-1900K and log(g)= 4.5 ± 0.5. The spectra also show that the radial velocities of components A and B agree to within ±10kms-1, further confirming their physical association. Using the age and bolometric luminosity of CD-35 2722B, we derive a mass of 31 ± 8 M Jup from the Lyon/Dusty evolutionary models. Altogether, young late-M to mid-L type companions appear to be overluminous for their near-IR spectral type compared with field objects, in contrast to the underluminosity of young late-L and early-T dwarfs. © 2011. The American Astronomical Society. All rights reserved.

Upper limits for undetected trace species in the stratosphere of Titan

(2011)

Authors:

Conor A Nixon, Richard K Achterberg, Nicholas A Teanby, Patrick GJ Irwin, Jean-Marie Flaud, Isabelle Kleiner, Alix Dehayem-Kamadjeu, Linda R Brown, Robert L Sams, Bruno Bézard, Athena Coustenis, Todd M Ansty, Andrei Mamoutkine, Sandrine Vinatier, Gordon L Bjoraker, Donald E Jennings, Paul N Romani, F Michael Flasar

Uranus' cloud structure and seasonal variability from Gemini-North and UKIRT observations

Icarus 212:1 (2011) 339-350

Authors:

PGJ Irwin, NA Teanby, GR Davis, LN Fletcher, GS Orton, D Tice, A Kyffin

Abstract:

Observations of Uranus were made in September 2009 with the Gemini-North telescope in Hawaii, using both the NIFS and NIRI instruments. Observations were acquired in Adaptive Optics mode and have a spatial resolution of approximately 0.1″ NIRI images were recorded with three spectral filters to constrain the overall appearance of the planet: J, H-continuum and CH4(long), and long slit spectroscopy measurements were also made (1.49-1.79μm) with the entrance slit aligned on Uranus' central meridian. To acquire spectra from other points on the planet, the NIFS instrument was used and its 3″×3″ field of view stepped across Uranus' disc. These observations were combined to yield complete images of Uranus at 2040 wavelengths between 1.476 and 1.803μm. The observed spectra along Uranus central meridian were analysed with the NEMESIS retrieval tool and used to infer the vertical/latitudinal variation in cloud optical depth. We find that the 2009 Gemini data perfectly complement our observations/conclusions from UKIRT/UIST observations made in 2006-2008 and show that the north polar zone at 45°N has continued to steadily brighten while that at 45°S has continued to fade. The improved spatial resolution of the Gemini observations compared with the non-AO UKIRT/UIST data removes some of the earlier ambiguities with our previous analyses and shows that the opacity of clouds deeper than the 2-bar level does indeed diminish towards the poles and also reveals a darkening of the deeper cloud deck near the equator, perhaps coinciding with a region of subduction. We find that the clouds at 45°N,S lie at slightly lower pressures than the clouds at more equatorial latitudes, which suggests that they might possibly be composed of a different condensate, presumably CH4 ice, rather than H2S or NH3 ice, which is assumed for the deeper cloud. In addition, analysis of the centre-to-limb curves of both the Gemini/NIFS and earlier UKIRT/UIST IFU observations shows that the main cloud deck has a well-defined top, and also allows us to better constrain the particle scattering properties. Overall, Uranus appeared to be less convectively active in 2009 than in the previous 3years, which suggests that now the northern spring equinox (which occurred in 2007) is passed the atmosphere is settling back into the quiescent state seen by Voyager 2 in 1986. However, a number of discrete clouds were still observed, with one at 15°N found to lie near the 500 mb level, while another at 30°N, was seen to be much higher at near the 200 mb level. Such high clouds are assumed to be composed of CH4 ice. © 2011 Elsevier Inc.