Cumulative Carbon and Just Allocation of the Global Carbon Commons
Chicago Journal of International Law 13:2 (2013) 12
From spectra to atmospheres: Solving the underconstrained retrieval problem for exoplanets
Proceedings of the International Astronomical Union 8:S299 (2013) 275-276
Abstract:
Spectroscopic observations of transiting exoplanets have provided the first indications of their atmospheric structure and composition. Optimal estimation retrievals have been successfully applied to solar system planets to determine the temperature, composition and aerosol properties of their atmospheres, and have recently been applied to exoplanets. We show the effectiveness of the technique when combined with simulated observations from the proposed space telescope EChO, and also discuss the difficulty of constraining a complex system with sparse data and large uncertainties, using the super-Earth GJ 1214b as an example. Copyright © 2013, International Astronomical Union.High resolution in three dimensions with SWIFT and PALM3K
3rd AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes (2013)
Abstract:
SWIFT is a visible light (650-1000nm) integral field spectorgaph fed by the Palomar extreme adaptive optics system PALM3K. With a subaperture spacing of 8cm, PALM3K is capable of delivering diffraction limited performance even in the visible. With SWIFT providing spatially resolved spectroscopy at R=4000, this provides a truly unique facility for high resolution science in three dimensions. We present here some results from the first year of PALM3K+SWIFT science. We also report on our experience of operating a small field of view instrument (1"x0.5") with a high performance AO system, and hope the lessons learned will provide valuable input to designing successful and productive AO plus Instrument combinations for ELTs.Radiative forcing of the stratosphere of Jupiter, Part I: Atmospheric cooling rates from Voyager to Cassini
Planetary and Space Science 88 (2013) 3-25
Abstract:
We developed a line-by-line heating and cooling rate model for the stratosphere of Jupiter, based on two complete sets of global maps of temperature, C2H2 and C2H6, retrieved from the Cassini and Voyager observations in the latitude and vertical plane, with a careful error analysis. The non-LTE effect is found unimportant on the thermal cooling rate below the 0.01 mbar pressure level. The most important coolants are molecular hydrogen between 10 and 100 mbar, and hydrocarbons, including ethane (C2H6), acetylene (C2H2)and methane(CH4), in the region above. The two-dimensional cooling rate maps are influenced primarily by the temperature structure, and also by the meridional distributions of C2H2 and C2H6.The temperature anomalies at the 1 mbar pressure level in the Cassini data and the strong C2H6 latitudinal contrast in the Voyager epoch are the two most prominent features influencing the cooling rate patterns, with the effect from the 'quasi-quadrennial oscillation (QQO)' thermal structures at ~20 mbar. The globally averaged CH4 heating and cooling rates are not balanced, clearly in the lower stratosphere under 10 mbar, and possibly in the upper stratosphere above the 1 mbar pressure level. Possible heating sources from the gravity wave breaking and aerosols are discussed. The radiative relaxation timescale in the lower stratosphere implies that the temperature profile might not be purely radiatively controlled. © 2013 Elsevier Ltd.The optical transmission spectrum of the hot Jupiter HAT-P-32b: Clouds explain the absence of broad spectral features?
Monthly Notices of the Royal Astronomical Society 436:4 (2013) 2974-2988