Scattering particles in nightside limb observations of Venus' upper atmosphere by Venus Express VIRTIS

Icarus 211:1 (2011) 51-57

Authors:

R de Kok, PGJ Irwin, CCC Tsang, G Piccioni, P Drossart

Abstract:

Nightside infrared limb spectra of the Venus upper atmosphere, obtained by Venus Express VIRTIS, show strong scattering of thermal radiation. This scattering of upward-going radiation into the line-of-sight is dominant below 82.5. km even at a wavelength of 5 μm, which is indicative of relatively large particles. We show that 1 μm-sized sulfuric acid particles (also known as mode 2 particles) provide a good fit to the VIRTIS limb data at high altitudes. We retrieve vertical profiles of the mode 2 number density between 75 and 90. km at two latitude ranges: 20-30°N and 47-50°N. Between 20 and 30°N, scattering by mode 2 particles is the main source of radiance for altitudes between 80 and 85. km. Above altitudes of 85. km smaller particles can also be used to fit the spectra. Between 47 and 50°N mode 2 number densities are generally lower than between 20 and 30°N and the profiles show more variability. This is consistent with the 47-50° latitude region being at the boundary between the low latitudes and high latitudes, with the latter showing lower cloud tops and higher ultraviolet brightness (Titov, D.V., Taylor, F.W., Svedhem, H., Ignatiev, N.I., Markiewicz, W.J., Piccioni, G., Drossart, P. [2008]. Nature 456, 620-623). © 2010 Elsevier Inc.

Testing the limit of AO for ELTs: Diffraction limited astronomy in the red optical

AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)

Authors:

M Tecza, J Magorrian, N Thatte, F Clarke

Abstract:

Many of the proposed science cases for extremely large telescopes (ELT) are only possible because of the unprecedented sensitivity and spatial resolution due to advanced, e.g. tomographic and multi conjugate, adaptive optic (AO) systems. Current AO systems on 8-10 m telescopes work best at wavelengths longward of 1 μm with Strehl ratios ≥ 15%. At red-optical wavelengths, e.g. in the I band (0.8 μm), the Strehl ratio is at best a few percent. The AO point spread function (PSF) typically has a diffraction-limited core superimposed on the seeing halo, however, for a 5% Strehl ratio the core has a very low intensity above the seeing halo. At an ELT, due to a 3-4 times higher angular resolution, the diffraction limited PSF core of only 5% Strehl ratio stands more prominently atop the shallow seeing halo leading to almost diffraction limited image quality even at low Strehl ratios. Prominent ELT science cases that use the Calcium triplet can exploit this gain in spatial resolution in the red-optical: stellar populations in dense environments or crowded fields; and the case of intermediate mass black holes in nuclear and globular stellar clusters, as well as (super-) massive black holes in galaxies.

Evaluation of ocular hazards from 4 types of curing lights.

Journal (Canadian Dental Association) 77 (2011) b116

Authors:

Daniel Labrie, Justine Moe, Richard BT Price, Mitchell E Young, Christopher M Felix

Abstract:

Objective

To assess the risk of ocular damage from 4 types of light curing units (LCUs) and to estimate the maximum permissible ocular exposure times from each LCU during an 8-hour workday.

Methods

Extracted human maxillary teeth were mounted in a dentoform. Four types of LCUs (plasma arc, low-power and high-power light-emitting diode, and quartz-tungsten-halogen) were used to cure a simulated restoration in the maxillary central incisor from the facial and palatal aspects. To simulate ocular exposure, the spectral irradiance (W/[cm2 · nm]) from the LCUs was measured 5 times at each of 3 distances (30 cm, 50 cm and 100 cm) from the tooth, using a cosine-corrected probe attached, via a fibre optic cable, to a calibrated spectroradiometer. The weighted blue-light and effective ultraviolet (UV) irradiances that would be received by the eye from each LCU were calculated.

Results

The maximum permissible daily exposure limits for UV light exceeded 8 hours at all distances and orientations. The maximum permissible cumulative daily exposure time to blue light was as low as 6 seconds when curing from the palatal aspect with the plasma arc LCU and as high as 1.5 hours when the low-power light-emitting diode LCU was used from the facial aspect.

Conclusions

The 4 LCUs tested did not pose a risk of UV-mediated ocular damage. The higher-powered lamps showed potential to cause blue-light-mediated ocular damage at shorter distances, with damage potentially occurring after cumulative viewing of only 6 seconds at the 30-cm distance during an 8-hour workday.

Bifurcations leading to summer Arctic sea ice loss

Journal of Geophysical Research American Geophysical Union (AGU) 116:D19 (2011)

Authors:

Dorian S Abbot, Mary Silber, Raymond T Pierrehumbert

Models of the global cloud structure on Venus derived from Venus Express observations

Icarus (2011)

Authors:

JK Barstow, CCC Tsang, CF Wilson, PGJ Irwin, FW Taylor, K McGouldrick, P Drossart, G Piccioni, S Tellmann