Hydrothermal plume dynamics on Europa: Implications for chaos formation

Journal of Geophysical Research: Planets American Geophysical Union (AGU) 109:E3 (2004)

Authors:

Jason C Goodman, Geoffrey C Collins, John Marshall, Raymond T Pierrehumbert

Abstract:

Hydrothermal plumes may be responsible for transmitting radiogenic or tidally generated heat from Europa's rocky interior through a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos regions and lenticulae by melting or exciting convection in the ice layer. In contrast to earlier work, we argue that Europa's ocean should be treated as an unstratified fluid. We have adapted and expanded upon existing work describing buoyant plumes in a rotating, unstratified environment. We discuss the scaling laws governing the flow and geometry of plumes on Europa and perform a laboratory experiment to obtain scaling constants and to visualize plume behavior in a Europa‐like parameter regime. We predict that hydrothermal plumes on Europa are of a lateral scale (at least 25–50 km) comparable to large chaos regions; they are too broad to be responsible for the formation of individual lenticulae. Plume heat fluxes (0.1–10 W/m2) are too weak to allow complete melt‐through of the ice layer. Current speeds in the plume (3–8 mm/s) are much slower than indicated by previous studies. The observed movement of ice blocks in the Conamara Chaos region is unlikely to be driven by such weak flow.

An intense stratospheric jet on Jupiter

Nature 427 (2004) 132-135

Authors:

SB Calcutt, Achtergerg, Flasar, Kunde

Data reduction software for the VLT integral field spectrometer SPIFFI

ASTR SOC P 314 (2004) 380-383

Authors:

J Schreiber, F Eisenhauer, M Tecza, R Abuter, M Horrobin, N Thatte

Abstract:

A data reduction software package is developed to reduce data of the near-IR integral field spectrometer SPIFFI built at MPE. The basic data reduction routines are coded in ANSI C. The high level scripting language Python is used to connect the C-routines allowing fast prototyping. Several Python scripts are written to produce the needed calibration data and to generate the final result, a wavelength calibrated data cube with the instrumental signatures removed.

Design study for the KMOS spectrograph module

P SOC PHOTO-OPT INS 5492 (2004) 1395-1402

Authors:

M Tecza, N Thatte, I Lewis, J Lynn, W Lau, S Yang, I Tosh, M Wells

Abstract:

We present the results of a design study for the spectrograph module for KMOS - a cryogenic near-infrared multi-object spectrograph being developed as a second generation instrument for the VLT by a consortium of UK and German institutes. KMOS will consist of 24 deployable integral field units feeding three identical spectrograph units via image slicers. The spectrographs are designed to provide a resolving power greater than 3000, so as to provide adequate OH avoidance, whilst covering one of the J, H or K bands within a single exposure. We present the opto-mechanical layout of the spectrographs, together with an analysis of the impact of the image quality (and PSF uniformity) on the accuracy of sky background subtraction within each IFU's field of view.

Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer

Chapter in The Cassini-Huygens Mission, Springer Nature (2004) 169-297

Authors:

FM Flasar, VG Kunde, MM Abbas, RK Achterberg, P Ade, A Barucci, B Bézard, GL Bjoraker, JC Brasunas, S Calcutt, R Carlson, CJ Césarsky, BJ Conrath, A Coradini, R Courtin, A Coustenis, S Edberg, S Edgington, C Ferrari, T Fouchet, D Gautier, PJ Gierasch, K Grossman, P Irwin, DE Jennings, E Lellouch, AA Mamoutkine, A Marten, JP Meyer, CA Nixon, GS Orton, TC Owen, JC Pearl, R Prangé, F Raulin, PL Read, PN Romani, RE Samuelson, ME Segura, MR Showalter, AA Simon-Miller, MD Smith, JR Spencer, LJ Spilker, FW Taylor