SINFONI - Integral field spectroscopy at 50 niilli-arcsecond resolution with the ESO VLT

P SOC PHOTO-OPT INS 4841 (2003) 1548-1561

Authors:

F Eisenhauer, H Bonnet, R Abuter, K Bickert, F Bianca-Marchet, J Brynnel, R Conzelmann, B Delabre, R Donaldson, J Farinto, E Fedrigo, G Finger, R Genzel, N Hubin, C Iserlohe, M Kasper, M Kissler-Patig, G Monnet, C Rohrle, J Schreiber, S Stefan, M Tecza, N Thatte, H Weisz

Abstract:

SINFONI is an adaptive optics assisted near-infrared integral field spectrometer for the ESO VLT. The Adaptive Optics Module (built by the ESO Adaptive Optics Group) is a 60-elements curvature-sensor based system, designed for operations with natural or sodium laser guide stars. The near-infrared integral field spectrometer SPIFFI (built by the Infrared Group of MPE) provides simultaneous spectroscopy of 32 x 32 spatial pixels, and a spectral resolving power of up to 3300. The adaptive optics module is in the phase of integration; the spectrometer is presently tested in the laboratory. We provide an overview of the project, with particular emphasis on the problems encountered in designing and building an adaptive optics assisted spectrometer.

SPIFFI image slicer: High-precision optics at cryogenic temperatures

P SOC PHOTO-OPT INS 4842 (2003) 375-383

Authors:

M Tecza, F Eisenhauer, C Iserlohe, N Thatte, R Abuter, C Rohrle, J Schreiber

Abstract:

SPIFFI is the near-infrared integral field spectrograph of the SINFONI VLT instrument. SPIFFI uses an image slicer with plane mirrors as its integral field unit. The integral field unit consists of two stacks of mirrors, each with 32 mirrors, rearranging a two-dimensional field-of-view of 32 x 32 pixels into a one-dimensional pseudo slit, which is fed into a long-slit spectrograph. The image slicer is constructed solely, from Zerodur and is operated at a cryogenic temperature of 77 Kelvin. Only optical contacting is used for the assembly of the individual slicer mirrors and the image slicer on its base-plate. The special slicer mount holds the image slicer stress-free and compensates for the different thermal coefficients of expansion of the Zerodur image slicer and the Aluminium mount. Tests at room and cryogenic temperatures show the performance of the image slicer, the durability of the optical contacting technique, and the accuracy of the slicer mount.

Feasibility study of a stratospheric-airship observatory

Proceedings of SPIE - The International Society for Optical Engineering 4857 (2002) 227-238

Authors:

D Griffin, B Swinyard, S Sidher, P Irwin

Abstract:

This paper explores the concept of utilizing a long duration stratospheric airship as an astronomical observatory in the sub-millimetre wavelengths. In the first section of the paper, a conceptual description of the airship platform is presented along with the principles of operation of the platform. The results of a computer design code and trajectory simulation code are presented. These codes show that through the use of a modest power and propulsion system, the difficulty of constructing such a such a platform is greatly reduced. Finally, the results of a brief study into the accommodation and optical performance of a Ø3.5m class telescope and photometric and spectrographic instrument similar to the Herschel/SPIRE system within such an airship are presented. This study indicates that while the atmospheric absorption and emission characteristics impose some limitations on the spectrographic and photometric performance of the system in the 200μm to 1000μm band, the overall performance is more than adequate to render the concept viable and complementary to existing and planned ground, airborne and space based observatories.

Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: from non-self-similar probability distribution functions to self-similar eigenmodes.

Physical review. E, Statistical, nonlinear, and soft matter physics 66:5 Pt 2 (2002) 056302

Authors:

Jai Sukhatme, Raymond T Pierrehumbert

Abstract:

We examine the decay of passive scalars with small, but nonzero, diffusivity in bounded two-dimensional (2D) domains. The velocity fields responsible for advection are smooth (i.e., they have bounded gradients) and of a single large scale. Moreover, the scale of the velocity field is taken to be similar to the size of the entire domain. The importance of the initial scale of variation of the scalar field with respect to that of the velocity field is strongly emphasized. If these scales are comparable and the velocity field is time periodic, we see the formation of a periodic scalar eigenmode. The eigenmode is numerically realized by means of a deterministic 2D map on a lattice. Analytical justification for the eigenmode is available from theorems in the dynamo literature. Weakening the notion of an eigenmode to mean statistical stationarity, we provide numerical evidence that the eigenmode solution also holds for aperiodic flows (represented by random maps). Turning to the evolution of an initially small scale scalar field, we demonstrate the transition from an evolving (i.e., non-self-similar) probability distribution function (pdf) to a stationary (self-similar) pdf as the scale of variation of the scalar field progresses from being small to being comparable to that of the velocity field (and of the domain). Furthermore, the non-self-similar regime itself consists of two stages. Both stages are examined and the coupling between diffusion and the distribution of the finite time Lyapunov exponents is shown to be responsible for the pdf evolution.

The Advection–Diffusion Problem for Stratospheric Flow. Part II: Probability Distribution Function of Tracer Gradients

Journal of the Atmospheric Sciences American Meteorological Society 59:19 (2002) 2830-2845

Authors:

Yongyun Hu, Raymond T Pierrehumbert