Stellar dynamics observations of a double nucleus in M 83
ArXiv astro-ph/0009392 (2000)
Abstract:
We report on the discovery of a double nucleus in M 83, based on measurements of the line of sight velocity distribution of stars observed at near infrared wavelengths with the VLT ISAAC spectrograph. We observe two peaks separated by 2.7" in the velocity dispersion profile of light from late-type stars measured along a slit 0.6" wide, centered on the peak of K band emission and with P.A. 51.7 degrees. The first peak coincides with the peak of the K band light distribution, widely assumed to be the galaxy nucleus. The second peak, of almost equal strength, almost coincides with the center of symmetry of the outer isophotes of the galaxy. The secondary peak location has little K band emission, and appears to be significantly extincted, even at near infrared wavelengths. It also lies along a mid-infrared bar, previously identified by Gallais et al. (1991) and shows strong hydrogen recombination emission at 1.875 microns. If we interpret the observed stellar velocity dispersion as coming from a virialized system, the two nuclei would each contain an enclosed mass of 13.2 x 10^6 M_sun within a radius of 5.4pc. These could either be massive star clusters, or supermassive dark objects.Zero mode quantization of multi-Skyrmions
Physical Review D American Physical Society (APS) 61:11 (2000) 114024
Proximate humid and dry regions in Jupiter's atmosphere indicate complex local meteorology
Nature 405:6783 (2000) 158-160
Abstract:
Models of Jupiter's formation and structure predict that its atmosphere is enriched in oxygen, relative to the Sun, and that consequently water clouds should be present globally near the 5-bar pressure level. Past attempts to confirm these predictions have led to contradictory results; in particular, the Galileo probe revealed a very dry atmosphere at the entry site, with no significant clouds at depths exceeding the 2-bar level. Although the entry site was known to be relatively cloud-free, the contrast between the observed local dryness and the expected global wetness was surprising. Here we analyse near-infrared (around 5 μm) observations of Jupiter, a spectral region that can reveal the water vapour abundance and vertical cloud structure in the troposphere. We find that humid and extremely dry regions exist in close proximity, and that some humid regions are spatially correlated with bright convective clouds extending from the deep water clouds to the visible atmosphere.Spatially correlated and inhomogeneous random advection
Physics of Fluids AIP Publishing 12:4 (2000) 822-834
Lattice models of advection-diffusion.
Chaos (Woodbury, N.Y.) 10:1 (2000) 61-74