Jupiter's atmospheric composition from the Cassini thermal infrared spectroscopy experiment.

Science 305:5690 (2004) 1582-1586

Authors:

VG Kunde, FM Flasar, DE Jennings, B Bézard, DF Strobel, BJ Conrath, CA Nixon, GL Bjoraker, PN Romani, RK Achterberg, AA Simon-Miller, P Irwin, JC Brasunas, JC Pearl, MD Smith, GS Orton, PJ Gierasch, LJ Spilker, RC Carlson, AA Mamoutkine, SB Calcutt, PL Read, FW Taylor, T Fouchet, P Parrish, A Barucci, R Courtin, A Coustenis, D Gautier, E Lellouch, A Marten, R Prangé, Y Biraud, C Ferrari, TC Owen, MM Abbas, RE Samuelson, F Raulin, P Ade, CJ Césarsky, KU Grossman, A Coradini

Abstract:

The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.

Upper limits on hydrogen halides in Jupiter from Cassini/CIRS observations

Icarus 170:1 (2004) 237-241

Authors:

T Fouchet, G Orton, PGJ Irwin, SB Calcutt, CA Nixon

Abstract:

We have determined the following upper limits for the mole fraction of hydrogen halides in Jupiter's atmosphere from Cassini/CIRS observations: [HF] <2.7×10-11, [HCl] <2.3×10-9, [HBr]<1.0×10-9, [HI] <7.6×10-9. These limits are smaller than solar composition for HF and HCl, and support the halogens' condensation in ammonium salts predicted by thermochemical models for the upper jovian troposphere. © 2004 Published by Elsevier Inc.

High levels of atmospheric carbon dioxide necessary for the termination of global glaciation

Nature Springer Nature 429:6992 (2004) 646-649

Hydrothermal plume dynamics on Europa: Implications for chaos formation

Journal of Geophysical Research: Planets American Geophysical Union (AGU) 109:E3 (2004) 2003JE002073

Authors:

Jason C Goodman, Geoffrey C Collins, John Marshall, Raymond T Pierrehumbert

Abstract:

Hydrothermal plumes may be responsible for transmitting radiogenic or tidally generated heat from Europa's rocky interior through a liquid ocean to the base of its ice shell. This process has been implicated in the formation of chaos regions and lenticulae by melting or exciting convection in the ice layer. In contrast to earlier work, we argue that Europa's ocean should be treated as an unstratified fluid. We have adapted and expanded upon existing work describing buoyant plumes in a rotating, unstratified environment. We discuss the scaling laws governing the flow and geometry of plumes on Europa and perform a laboratory experiment to obtain scaling constants and to visualize plume behavior in a Europa‐like parameter regime. We predict that hydrothermal plumes on Europa are of a lateral scale (at least 25–50 km) comparable to large chaos regions; they are too broad to be responsible for the formation of individual lenticulae. Plume heat fluxes (0.1–10 W/m2) are too weak to allow complete melt‐through of the ice layer. Current speeds in the plume (3–8 mm/s) are much slower than indicated by previous studies. The observed movement of ice blocks in the Conamara Chaos region is unlikely to be driven by such weak flow.

An intense stratospheric jet on Jupiter

Nature 427 (2004) 132-135

Authors:

SB Calcutt, Achtergerg, Flasar, Kunde