Hydrothermal plume dynamics on Europa: Implications for chaos formation

Journal of Geophysical Research American Geophysical Union (AGU) 109:E3 (2004)

Authors:

Jason C Goodman, Geoffrey C Collins, John Marshall, Raymond T Pierrehumbert

On-sky performance of SPIFFI: the integral field spectrometer for SINFONI at the VLT

P SOC PHOTO-OPT INS 5492 (2004) 1123-1134

Authors:

C Iserlohe, M Tecza, F Eisenhauer, R Genzel, N Thatte, R Abuter, MJ Horrobin, A Schegerer, J Schreiber, H Bonnet

Abstract:

SPIFFI (SPectrometer for Infrared Faint Field Imaging) is a fully cryogenic, near-infrared imaging spectrograph built at the Max-Planck-Institute for Extraterrestrial Physics (MPE) and upgraded with a new detector and spectrograph camera by ASTRON/NOVA, ESO and MPE. The upgraded instrument will become a facility instrument for the ESO VLT in summer 2004 as part of the SINFONI (SINgle Faint Object Near-IR Investigation) project, which is the combination of SPIFFI and ESOs adaptive optics module MACAO (Multiple Application Curvature Adaptive Optics), at the Cassegrain focus of Yepun (UT4). In spring 2003 we had the opportunity to observe with SPIFFI as a guest instrument without the AO-module at the Cassegrain focus of UT2 of the VLT. In this paper we discuss the performance of SPIFFI during the guest-instrument phase. First we summarize the technical performance of SPIFFI like the spatial and spectral resolution, the detector performance and the instruments throughput. Afterwards we illustrate the power of integral field spectroscopy by presenting data and results of the Galactic Center.

Retrievals of jovian tropospheric phosphine from Cassini/CIRS

ICARUS 172:1 (2004) 37-49

Authors:

PGJ Irwin, P Parrish, T Fouchet, SB Calcutt, FW Taylor, AA Simon-Miller, CA Nixon

SPIFFI observations of the starburst SMM J14011+0252: Already old, fat, and rich by z=2.565

ASTROPHYSICAL JOURNAL 605:2 (2004) 109-112

Authors:

M Tecza, AJ Baker, RI Davies, R Genzel, MD Lehnert, F Eisenhauer, D Lutz, N Nesvadba, S Seitz, LJ Tacconi, NA Thatte, R Abuter, R Bender

Glacial flow of floating marine ice in “Snowball Earth”

Journal of Geophysical Research: Oceans American Geophysical Union (AGU) 108:C10 (2003) 2002JC001471

Authors:

Jason C Goodman, Raymond T Pierrehumbert

Abstract:

Simulations of frigid Neoproterozoic climates have not considered the tendency of thick layers of floating marine ice to deform and spread laterally. We have constructed a simple model of the production and flow of marine ice on a planetary scale, and determined ice thickness and flow in two situations: when the ocean is globally ice‐covered (“hard snowball”) and when the tropical waters remain open (“soft snowball”). In both cases, ice flow strongly affects the distribution of marine ice. Flowing ice probably carries enough latent heat and freshwater to significantly affect the transition into a Snowball Earth climate. We speculate that flowing marine ice, rather than continental ice sheets, may be the erosive agent that created some Neoproterozoic glacial deposits.