Latitudinal variations in methane abundance, aerosol opacity and aerosol scattering efficiency in Neptune's atmosphere determined from VLT/MUSE
Journal of Geophysical Research: Planets American Geophysical Union 128:11 (2023) e2023JE007980
Abstract:
Spectral observations of Neptune made in 2019 with the MUSE instrument at the Very Large Telescope in Chile have been analysed to determine the spatial variation of aerosol scattering properties and methane abundance in Neptune’s atmosphere. The darkening of the South Polar Wave (SPW) at ∼ 60◦S, and dark spots such as the Voyager 2 Great Dark Spot is concluded to be due to a spectrally-dependent darkening (λ < 650nm) of particles in a deep aerosol layer at ∼ 5 bar and presumed to be composed of a mixture of ~ 650 nm, with bright zones latitudinally separated by ∼ 25◦ . This feature, similar to the spectral characteristics of a discrete deep bright spot DBS-2019 found in our data, is found to be consistent with a brightening of the particles in the same ∼5-bar aerosol layer at λ > 650 nm. We find the properties of an overlying methane/haze aerosol layer at ∼ 2 bar are, to first-order, invariant with latitude, while variations in the opacity of an upper tropospheric haze layer reproduce the observed reflectivity at methane-absorbing wavelengths, with higher abundances found at the equator and also in a narrow ‘zone’ at 80◦S. Finally, we find the mean abundance of methane below its condensation level to be 6-7% at the equator reducing to ∼3% south of ∼25◦S, although the absolute abundances are model dependent.ATMOSPHERIX: I- an open source high-resolution transmission spectroscopy pipeline for exoplanets atmospheres with SPIRou
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 527:1 (2023) 544-565
ATMOSPHERIX: II- Characterizing exoplanet atmospheres through transmission spectroscopy with SPIRou
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 527:1 (2023) 566-582
3D Simulations of the Archean Earth Including Photochemical Haze Profiles
Journal of Geophysical Research: Atmospheres, Volume 128, Issue 20 (2023)
Abstract:
We present results from 3D simulations of the Archean Earth including a prescribed (non-interactive) spherical haze generated through a 1D photochemical model. Our simulations suggest that a thin haze layer, formed when CH4/CO2 = 0.1, leads to global warming of ∼10.6 K due to the change of water vapor and cloud feedback, compared to the simulation without any haze. However, a thicker haze layer, formed when CH4/CO2 > 0.1, leads to global cooling of up to ∼65 K as the scattering and absorption of shortwave radiation from the haze reduces the radiation from reaching the planetary surface. A thermal inversion is formed with a lower tropopause as the CH4/CO2 ratio increases. The haze reaches an optical threshold thickness when CH4/CO2 ∼ 0.175 beyond which the atmospheric structure and the global surface temperature do not vary much.
Latitudinal variations in methane abundance, aerosol opacity and aerosol scattering efficiency in Neptune's atmosphere determined from VLT/MUSE
(2023)