Early Release Science of the exoplanet WASP-39b with JWST NIRCam.

Nature 614:7949 (2023) 653-658

Authors:

Eva-Maria Ahrer, Kevin B Stevenson, Megan Mansfield, Sarah E Moran, Jonathan Brande, Giuseppe Morello, Catriona A Murray, Nikolay K Nikolov, Dominique JM Petit Dit de la Roche, Everett Schlawin, Peter J Wheatley, Sebastian Zieba, Natasha E Batalha, Mario Damiano, Jayesh M Goyal, Monika Lendl, Joshua D Lothringer, Sagnick Mukherjee, Kazumasa Ohno, Natalie M Batalha, Matthew P Battley, Jacob L Bean, Thomas G Beatty, Björn Benneke, Zachory K Berta-Thompson, Aarynn L Carter, Patricio E Cubillos, Tansu Daylan, Néstor Espinoza, Peter Gao, Neale P Gibson, Samuel Gill, Joseph Harrington, Renyu Hu, Laura Kreidberg, Nikole K Lewis, Michael R Line, Mercedes López-Morales, Vivien Parmentier, Diana K Powell, David K Sing, Shang-Min Tsai, Hannah R Wakeford, Luis Welbanks, Munazza K Alam, Lili Alderson, Natalie H Allen, David R Anderson, Joanna K Barstow, Daniel Bayliss, Taylor J Bell, Jasmina Blecic, Edward M Bryant, Matthew R Burleigh, Ludmila Carone, SL Casewell, Quentin Changeat, Katy L Chubb, Ian JM Crossfield, Nicolas Crouzet, Leen Decin, Jean-Michel Désert, Adina D Feinstein, Laura Flagg, Jonathan J Fortney, John E Gizis, Kevin Heng, Nicolas Iro, Eliza M-R Kempton, Sarah Kendrew, James Kirk, Heather A Knutson, Thaddeus D Komacek, Pierre-Olivier Lagage, Jérémy Leconte, Jacob Lustig-Yaeger, Ryan J MacDonald, Luigi Mancini, EM May, NJ Mayne, Yamila Miguel, Thomas Mikal-Evans, Karan Molaverdikhani, Enric Palle, Caroline Piaulet, Benjamin V Rackham, Seth Redfield, Laura K Rogers, Pierre-Alexis Roy, Zafar Rustamkulov, Evgenya L Shkolnik, Kristin S Sotzen, Jake Taylor, P Tremblin, Gregory S Tucker, Jake D Turner, Miguel de Val-Borro, Olivia Venot, Xi Zhang

Abstract:

Measuring the metallicity and carbon-to-oxygen (C/O) ratio in exoplanet atmospheres is a fundamental step towards constraining the dominant chemical processes at work and, if in equilibrium, revealing planet formation histories. Transmission spectroscopy (for example, refs. 1,2) provides the necessary means by constraining the abundances of oxygen- and carbon-bearing species; however, this requires broad wavelength coverage, moderate spectral resolution and high precision, which, together, are not achievable with previous observatories. Now that JWST has commenced science operations, we are able to observe exoplanets at previously uncharted wavelengths and spectral resolutions. Here we report time-series observations of the transiting exoplanet WASP-39b using JWST's Near InfraRed Camera (NIRCam). The long-wavelength spectroscopic and short-wavelength photometric light curves span 2.0-4.0 micrometres, exhibit minimal systematics and reveal well defined molecular absorption features in the planet's spectrum. Specifically, we detect gaseous water in the atmosphere and place an upper limit on the abundance of methane. The otherwise prominent carbon dioxide feature at 2.8 micrometres is largely masked by water. The best-fit chemical equilibrium models favour an atmospheric metallicity of 1-100-times solar (that is, an enrichment of elements heavier than helium relative to the Sun) and a substellar C/O ratio. The inferred high metallicity and low C/O ratio may indicate significant accretion of solid materials during planet formation (for example, refs. 3,4,) or disequilibrium processes in the upper atmosphere (for example, refs. 5,6).

Early Release Science of the exoplanet WASP-39b with JWST NIRISS.

Nature 614:7949 (2023) 670-675

Authors:

Adina D Feinstein, Michael Radica, Luis Welbanks, Catriona Anne Murray, Kazumasa Ohno, Louis-Philippe Coulombe, Néstor Espinoza, Jacob L Bean, Johanna K Teske, Björn Benneke, Michael R Line, Zafar Rustamkulov, Arianna Saba, Angelos Tsiaras, Joanna K Barstow, Jonathan J Fortney, Peter Gao, Heather A Knutson, Ryan J MacDonald, Thomas Mikal-Evans, Benjamin V Rackham, Jake Taylor, Vivien Parmentier, Natalie M Batalha, Zachory K Berta-Thompson, Aarynn L Carter, Quentin Changeat, Leonardo A Dos Santos, Neale P Gibson, Jayesh M Goyal, Laura Kreidberg, Mercedes López-Morales, Joshua D Lothringer, Yamila Miguel, Karan Molaverdikhani, Sarah E Moran, Giuseppe Morello, Sagnick Mukherjee, David K Sing, Kevin B Stevenson, Hannah R Wakeford, Eva-Maria Ahrer, Munazza K Alam, Lili Alderson, Natalie H Allen, Natasha E Batalha, Taylor J Bell, Jasmina Blecic, Jonathan Brande, Claudio Caceres, SL Casewell, Katy L Chubb, Ian JM Crossfield, Nicolas Crouzet, Patricio E Cubillos, Leen Decin, Jean-Michel Désert, Joseph Harrington, Kevin Heng, Thomas Henning, Nicolas Iro, Eliza M-R Kempton, Sarah Kendrew, James Kirk, Jessica Krick, Pierre-Olivier Lagage, Monika Lendl, Luigi Mancini, Megan Mansfield, EM May, NJ Mayne, Nikolay K Nikolov, Enric Palle, Dominique JM Petit Dit de la Roche, Caroline Piaulet, Diana Powell, Seth Redfield, Laura K Rogers, Michael T Roman, Pierre-Alexis Roy, Matthew C Nixon, Everett Schlawin, Xianyu Tan, P Tremblin, Jake D Turner, Olivia Venot, William C Waalkes, Peter J Wheatley, Xi Zhang

Abstract:

The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy1-4. However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality5-9. Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 μm in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.

Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H.

Nature 614:7949 (2023) 664-669

Authors:

Lili Alderson, Hannah R Wakeford, Munazza K Alam, Natasha E Batalha, Joshua D Lothringer, Jea Adams Redai, Saugata Barat, Jonathan Brande, Mario Damiano, Tansu Daylan, Néstor Espinoza, Laura Flagg, Jayesh M Goyal, David Grant, Renyu Hu, Julie Inglis, Elspeth KH Lee, Thomas Mikal-Evans, Lakeisha Ramos-Rosado, Pierre-Alexis Roy, Nicole L Wallack, Natalie M Batalha, Jacob L Bean, Björn Benneke, Zachory K Berta-Thompson, Aarynn L Carter, Quentin Changeat, Knicole D Colón, Ian JM Crossfield, Jean-Michel Désert, Daniel Foreman-Mackey, Neale P Gibson, Laura Kreidberg, Michael R Line, Mercedes López-Morales, Karan Molaverdikhani, Sarah E Moran, Giuseppe Morello, Julianne I Moses, Sagnick Mukherjee, Everett Schlawin, David K Sing, Kevin B Stevenson, Jake Taylor, Keshav Aggarwal, Eva-Maria Ahrer, Natalie H Allen, Joanna K Barstow, Taylor J Bell, Jasmina Blecic, Sarah L Casewell, Katy L Chubb, Nicolas Crouzet, Patricio E Cubillos, Leen Decin, Adina D Feinstein, Joanthan J Fortney, Joseph Harrington, Kevin Heng, Nicolas Iro, Eliza M-R Kempton, James Kirk, Heather A Knutson, Jessica Krick, Jérémy Leconte, Monika Lendl, Ryan J MacDonald, Luigi Mancini, Megan Mansfield, Erin M May, Nathan J Mayne, Yamila Miguel, Nikolay K Nikolov, Kazumasa Ohno, Enric Palle, Vivien Parmentier, Dominique JM Petit Dit de la Roche, Caroline Piaulet, Diana Powell, Benjamin V Rackham, Seth Redfield, Laura K Rogers, Zafar Rustamkulov, Xianyu Tan, P Tremblin, Shang-Min Tsai, Jake D Turner, Miguel de Val-Borro, Olivia Venot, Luis Welbanks, Peter J Wheatley, Xi Zhang

Abstract:

Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3-5 and high-resolution ground-based6-8 facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ) and H2O (21.5σ), and identify SO2 as the source of absorption at 4.1 μm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10.

Identification of carbon dioxide in an exoplanet atmosphere.

Nature 614:7949 (2023) 649-652

Abstract:

Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')1-3, and thus the formation processes of the primary atmospheres of hot gas giants4-6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7-9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10-12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0-5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models.

Measuring the variability of directly imaged exoplanets using vector Apodizing Phase Plates combined with ground-based differential spectrophotometry

(2023)

Authors:

Ben J Sutlieff, Jayne L Birkby, Jordan M Stone, David S Doelman, Matthew A Kenworthy, Vatsal Panwar, Alexander J Bohn, Steve Ertel, Frans Snik, Charles E Woodward, Andrew J Skemer, Jarron M Leisenring, Klaus G Strassmeier, David Charbonneau