First-order mean motion resonances in two-planet systems: general analysis and observed systems
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)
A practical guide to the analysis of non-response and attrition in longitudinal research using a real data example
International Journal of Behavioral Development 2019, Vol. 43(1) 24–34
Abstract:
Selective non-participation and attrition pose a ubiquitous threat to the validity of inferences drawn from observational longitudinal studies. We investigate various potential predictors for non-response and attrition of parents as well as young persons at different stages of a multi-informant study. Various phases of renewed consent from parents and young persons allowed for a unique comparison of factors that drive participation. The target sample consisted of 1675 children entering primary school at age seven in 2004. Seven waves of interviews, over the course of 10 years, measured levels of problem behavior as rated by children, parents, and teachers. In the initial study recruitment, where participation was driven by parental consent, non-response was highest amongst certain socially disadvantaged immigrant minority groups. There were fewer significant group differences at wave 5, when young people could be directly recruited into the study. Similarly, attrition was higher for some immigrant background groups. Methodological implications for future analyses are discussed.
A story of errors and bias: The optimization of the LGS WFS for HARMONI
AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes (2019)
Abstract:
Laser Guide Star [LGS] wave-front sensing is a key element of the Laser Tomographic AO system and mainly drives the final performance of any ground based high resolution instrument. In that framework, HARMONI the first light spectro-imager of the ELT [1,2], will use 6 Laser focused around 90km(@Zenith) with a circular geometry in order to sense, reconstruct and correct for the turbulence volume located above the telescope. LGS wave-front sensing suffers from several well-known limitations [3] which are exacerbated by the giant size of the Extremely Large Telescopes. In that context, the presentation is threefold: (1) we will describe, quantify and analyse the various effects (bias and noise) induced by the LGS WFS in the context of ELT. Among other points, we will focus on the spurious low order signal generated by the spatially and temporally variable sodium layer. (2) we will propose a global design trade-off for the LGS WFS and Tomographic reconstruction process in the HARMONI context. We will show that, under strong technical constraints (especially concerning the detectors characteristics), a mix of opto-mechanic and numerical optimisations will allow to get rid of WFS bias induce by spot elongation without degrading the ultimate system performance (3) beyond HARMONI baseline, we will briefly present alternative strategies (from components, concepts and algorithms point of view) that could solve the LGS spot elongation issues at lower costs and better robustness.A story of errors and bias: The optimization of the LGS WFS for HARMONI
AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes (2019)
Abstract:
© 2019 AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes. All rights reserved. Laser Guide Star [LGS] wave-front sensing is a key element of the Laser Tomographic AO system and mainly drives the final performance of any ground based high resolution instrument. In that framework, HARMONI the first light spectro-imager of the ELT [1,2], will use 6 Laser focused around 90km(@Zenith) with a circular geometry in order to sense, reconstruct and correct for the turbulence volume located above the telescope. LGS wave-front sensing suffers from several well-known limitations [3] which are exacerbated by the giant size of the Extremely Large Telescopes. In that context, the presentation is threefold: (1) we will describe, quantify and analyse the various effects (bias and noise) induced by the LGS WFS in the context of ELT. Among other points, we will focus on the spurious low order signal generated by the spatially and temporally variable sodium layer. (2) we will propose a global design trade-off for the LGS WFS and Tomographic reconstruction process in the HARMONI context. We will show that, under strong technical constraints (especially concerning the detectors characteristics), a mix of opto-mechanic and numerical optimisations will allow to get rid of WFS bias induce by spot elongation without degrading the ultimate system performance (3) beyond HARMONI baseline, we will briefly present alternative strategies (from components, concepts and algorithms point of view) that could solve the LGS spot elongation issues at lower costs and better robustness.Design of the HARMONI pyramid WFS module
AO4ELT 2019 - Proceedings 6th Adaptive Optics for Extremely Large Telescopes (2019)