Laser Tomographic AO system for an integral field spectrograph on the E-ELT: ATLAS project
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
ATLAS is a generic Laser Tomographic AO (LTAO) system for the E-ELT. Based on modular, relatively simple, and yet innovative concepts, it aims at providing diffraction-limited images in the near infra-red for a close to 100 percent sky coverage.Reassessing the radial-velocity evidence for planets around CoRoT-7
Monthly Notices of the Royal Astronomical Society 411:3 (2011) 1953-1962
Abstract:
CoRoT-7 is an 11 th magnitude K-star whose light curve shows transits with a depth of 0.3mmag and a period of 0.854d, superimposed on variability at the 1 per cent level, due to the modulation of evolving active regions with the star's 23-d rotation period. In this paper, we revisit the published HARPS radial-velocity (RV) measurements of the object, which were previously used to estimate the companion mass, but have been the subject of ongoing debate. We build a realistic model of the star's activity during the HARPS observations, by fitting simultaneously the linewidth (as measured by the width of the cross-correlation function) and the line bisector, and use it to evaluate the contribution of activity to the RV variations. The data show clear evidence of errors above the level of the formal uncertainties, which are accounted for neither by activity nor by any plausible planet model and which increase rapidly with a decreasing signal-to-noise ratio (S/N) of the spectra. We cite evidence of similar systematics in mid-S/N spectra of other targets obtained with HARPS and other high-precision RV spectrographs, and discuss possible sources. Allowing for these, we re-evaluate the semi-amplitude of the CoRoT-7b signal, finding Kb= 1.6 ± 1.3ms-1, a tentative detection with a much reduced significance (1.2σ) compared to previous estimates. We also argue that the combined presence of activity and additional errors precludes a meaningful search for additional low-mass companions, despite previous claims to the contrary. Taken at face value, our analysis points to a lower density for CoRoT-7b, the 1σ mass range spanning 1-4 M ⊕ and allowing for a wide range of bulk compositions. In particular, an ice-rich composition is compatible with the RV constraints. More generally, this study highlights the importance of a realistic treatment of both activity and uncertainties, particularly in the medium S/N regime, which applies to most small planet candidates from CoRoT and Kepler. © 2010 The Authors Monthly Notices of the Royal Astronomical Society © 2010 RAS.Testing the limit of AO for ELTs: Diffraction limited astronomy in the red optical
AO for ELT 2011 - 2nd International Conference on Adaptive Optics for Extremely Large Telescopes (2011)
Abstract:
Many of the proposed science cases for extremely large telescopes (ELT) are only possible because of the unprecedented sensitivity and spatial resolution due to advanced, e.g. tomographic and multi conjugate, adaptive optic (AO) systems. Current AO systems on 8-10 m telescopes work best at wavelengths longward of 1 μm with Strehl ratios ≥ 15%. At red-optical wavelengths, e.g. in the I band (0.8 μm), the Strehl ratio is at best a few percent. The AO point spread function (PSF) typically has a diffraction-limited core superimposed on the seeing halo, however, for a 5% Strehl ratio the core has a very low intensity above the seeing halo. At an ELT, due to a 3-4 times higher angular resolution, the diffraction limited PSF core of only 5% Strehl ratio stands more prominently atop the shallow seeing halo leading to almost diffraction limited image quality even at low Strehl ratios. Prominent ELT science cases that use the Calcium triplet can exploit this gain in spatial resolution in the red-optical: stellar populations in dense environments or crowded fields; and the case of intermediate mass black holes in nuclear and globular stellar clusters, as well as (super-) massive black holes in galaxies.Transiting exoplanets from the CoRoT space mission: XV. CoRoT-15b: A brown-dwarf transiting companion
Astronomy and Astrophysics 525:19 (2011)
Abstract:
We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12+0.30-0.15 RJup and a mass of 63.3 ± 4.1 MJup, and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarf stars orbiting close to solar-typestars. Spectroscopic constraints and an analysis of the lightcurve imply a spin period in the range 2.9-3.1 days for the central star, which is compatible with a double-synchronisation of the system. © ESO, 2010. © 2010 ESO.Evaluation of ocular hazards from 4 types of curing lights.
Journal (Canadian Dental Association) 77 (2011) b116