The Gemini Nici Planet-Finding Campaign: Discovery of a close substellar companion to the young debris disk star PZ TEL
Astrophysical Journal Letters 720:1 PART 2 (2010)
Abstract:
We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the β Pic moving group observed with high-contrast adaptive optics imaging as part of the Gemini Near-Infrared Coronagraphic Imager Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 ± 1.0 AU (0. ′33 ± 0. ′01) in 2009 April. Second-epoch observations in 2010 May demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities >0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7 ± 2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12+8-4 Myr for the system, we estimate a mass of 36 ± 6 MJup based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of the few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 μm emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbitalmotion of the companion. © 2010. The American Astronomical Society. All rights reserved.MML 53: a new low-mass, pre-main sequence eclipsing binary in the Upper Centarus-Lupus Region discovered by SuperWASP
(2010)
Re-assessing the radial-velocity evidence for planets around CoRoT-7
(2010)
The Gemini NICI Planet-Finding Campaign
ArXiv 1008.39 (2010)
Abstract:
Our team is carrying out a multi-year observing program to directly image and characterize young extrasolar planets using the Near-Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1-meter telescope. NICI is the first instrument on a large telescope designed from the outset for high-contrast imaging, comprising a high-performance curvature adaptive optics system with a simultaneous dual-channel coronagraphic imager. Combined with state-of-the-art observing methods and data processing, NICI typically achieves ~2 magnitudes better contrast compared to previous ground-based or space-based programs, at separations inside of ~2 arcsec. In preparation for the Campaign, we carried out efforts to identify previously unrecognized young stars, to rigorously construct our observing strategy, and to optimize the combination of angular and spectral differential imaging. The Planet-Finding Campaign is in its second year, with first-epoch imaging of 174 stars already obtained out of a total sample of 300 stars. We describe the Campaign's goals, design, implementation, performance, and preliminary results. The NICI Campaign represents the largest and most sensitive imaging survey to date for massive (~1 Mjup) planets around other stars. Upon completion, the Campaign will establish the best measurements to date on the properties of young gas-giant planets at ~5-10 AU separations. Finally, Campaign discoveries will be well-suited to long-term orbital monitoring and detailed spectrophotometric followup with next-generation planet-finding instruments.Possible detection of phase changes from the non-transiting planet HD 46375b by CoRoT
Astronomy and Astrophysics 518:9 (2010)