Disk dynamics and planet migration
EAS Publications Series 41 (2010) 209-218
Abstract:
We review models of protoplanetary disks. In the earlier stages of evolution, disks are subject to gravitational instabilities that redistribute mass and angular momentum on short timescales. Later on, when the mass of the disk is below ten percent or so of that of the central star, accretion occurs through the magnetorotational instability. The parts of the disks that are not ionized enough to couple to the magnetic field may not accrete or accrete inefficiently. We also review theories of planet migration. Tidal interaction between a disk and an embedded planet leads to angular momentum exchange between the planetary orbital motion and the disk rotation. This results in low mass planets migrating with respect to the gas in the disk, while massive planets open up a gap in the vicinity of their orbit and migrate in as the disk is accreted. © EAS, EDP Sciences, 2010.Exoplanet discoveries with the CoRoT space observatory
Solar System Research 44:6 (2010) 520-526
Abstract:
The CoRoT space observatory is a project which is led by the French space agency CNES and leading space research institutes in Austria, Brazil, Belgium, Germany and Spain and also the European Space Agency ESA. CoRoT observed since its launch in December 27, 2006 about 100 000 stars for the exoplanet channel, during 150 days uninterrupted high-precision photometry. Since the The CoRoT-team has several exoplanet candidates which are currently analyzed under its study, we report here the discoveries of nine exoplanets which were observed by CoRoT. Discovered exoplanets such as CoRoT-3b populate the brown dwarf desert and close the gap of measured physical properties between usual gas giants and very low mass stars. CoRoT discoveries extended the known range of planet masses down to about 4.8 Earth-masses (CoRoT-7b) and up to 21 Jupiter masses (CoRoT-3b), the radii to about 1.68 × 0.09 REarth (CoRoT-7b) and up to the most inflated hot Jupiter with 1.49 × 0.09 REarth found so far (CoRoT-1b), and the transiting exoplanet with the longest period of 95.274 days (CoRoT-9b). Giant exoplanets have been detected at low metallicity, rapidly rotating and active, spotted stars. Two CoRoT planets have host stars with the lowest content of heavy elements known to show a transit hinting towards a different planethost-star-metallicity relation then the one found by radial-velocity search programs. Finally the properties of the CoRoT-7b prove that rocky planets with a density close to Earth exist outside the Solar System. Finally the detection of the secondary transit of CoRoT-1b at a sensitivity level of 10-5 and the very clear detection of the "super-Earth" CoRoT-7b at 3.5 × 10-4 relative flux are promising evidence that the space observatory is being able to detect even smaller exoplanets with the size of the Earth. © 2010 Pleiades Publishing, Ltd.Transit timing analysis of CoRoT-1b: (Research Note)
Astronomy and Astrophysics 510:1 (2010)
Abstract:
Context: CoRoT, the pioneer space-based transit search, steadily provides thousands of high-precision light curves with continuous time sampling over periods of up to 5 months. The transits of a planet perturbed by an additional object are not strictly periodic. By studying the transit timing variations (TTVs), additional objects can be detected in the system. Aims: A transit timing analysis of CoRoT-1b is carried out to constrain the existence of additional planets in the system. Methods: We used data obtained by an improved version of the CoRoT data pipeline (version 2.0). Individual transits were fitted to determine the mid-transit times, and we analyzed the derived O-C diagram. N-body integrations were used to place limits on secondary planets. Results: No periodic timing variations with a period shorter than the observational window (55 days) are found. The presence of an Earth-mass Trojan is not likely. A planet of mass greater than ∼1 Earth mass can be ruled out by the present data if the object is in a 2:1 (exterior) mean motion resonance with CoRoT-1b. Considering initially circular orbits: (i) super-Earths (less than 10 Earthmasses) are excluded for periods less than about 3.5 days; (ii) Saturn-like planets can be ruled out for periods less than about 5 days; (iii) Jupiter-like planets should have a minimum orbital period of about 6.5 days. © 2010 ESO.Transiting exoplanets from the CoRoT space mission. XIV. CoRoT-11b: a transiting massive “hot-Jupiter” in a prograde orbit around a rapidly rotating F-type star
åp 524 (2010) A55-A55
Photospheric activity, rotation, and star-planet interaction of the planet-hosting star CoRoT-6
Astronomy and Astrophysics 525:1 (2010)