System study of EPICS, the exoplanets imager for the E-ELT

Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)

Authors:

C Vérinaud, M Kasper, JL Beuzit, RG Gratton, D Mesa, E Aller-Carpentier, E Fedrigo, L Abe, P Baudoz, A Boccaletti, M Bonavita, K Dohlen, N Hubin, F Kerber, V Korkiakoski, J Antichi, P Martinez, P Rabou, R Roelfsema, HM Schmid, N Thatte, G Salter, M Tecza, L Venema, H Hanenburg, R Jager, N Yaitskova, O Preis, M Orecchia, E Stadler

Abstract:

ESO and a large European consortium completed the phase-A study of EPICS, an instrument dedicated to exoplanets direct imaging for the EELT. The very ambitious science goals of EPICS, the imaging of reflected light of mature gas giant exoplanets around bright stars, sets extremely strong requirements in terms of instrumental contrast achievable. The segmented nature of an ELT appears as a very large source of quasi-static high order speckles that can impair the detection of faint sources with small brightness contrast with respect to their parent star. The paper shows how the overall system has been designed in order to maximize the efficiency of quasi-static speckles rejection by calibration and post-processing using the spectral and polarization dependency of light waves. The trade-offs that led to the choice of the concepts for common path and diffraction suppression system is presented. The performance of the instrument is predicted using simulations of the extreme Adaptive Optics system and polychromatic wave-front propagation through the various optical elements. © 2010 SPIE.

The gemini NICI planet-finding campaign

Proceedings of SPIE - The International Society for Optical Engineering 7736:PART 1 (2010)

Authors:

MC Liu, Z Wahhaj, BA Biller, EL Nielsen, M Chun, LM Close, C Ftaclas, M Hartung, TL Hayward, F Clarke, IN Reid, EL Shkolnik, M Tecza, N Thatte, S Alencar, P Artymowicz, A Boss, A Burrows, E De Gouveia Dal Pino, J Gregorio-Hetem, S Ida, MJ Kuchner, D Lin, D Toomey

Abstract:

Our team is carrying out a multi-year observing program to directly image and characterize young extrasolar planets using the Near-Infrared Coronagraphic Imager (NICI) on the Gemini-South 8.1-meter telescope. NICI is the first instrument on a large telescope designed from the outset for high-contrast imaging, comprising a high-performance curvature adaptive optics (AO) system with a simultaneous dual-channel coronagraphic imager. Combined, with state-of-the-art AO observing methods and data processing, NICI typically achieves ≈2 magnitudes better contrast compared to previous ground-based or space-based planet-finding efforts, at separations inside of ≈2". In preparation for the Campaign, we carried out efforts to identify previously unrecognized, young stars as targets, to develop a rigorous quantitative method, for constructing our observing strategy, and to optimize the combination of angular differential imaging and spectral differential imaging. The Planet-Finding Campaign is in its second year, with first-epoch imaging of 174 stars already obtained out of a total sample of 300 stars. We describe the Campaign's goals, design, target selection, implementation, on-sky performance, and preliminary results. The NICI Planet-Finding Campaign represents the largest and most sensitive imaging survey to date for massive (≳1 MJup) planets around other stars. Upon completion, the Campaign will establish the best measurements to date on the properties of young gas-giant planets at ≳5-10 AU separations. Finally, Campaign discoveries will be well-suited to long-term orbital monitoring and detailed spectrophotometric followup with next-generation planet-finding instruments. © 2010 SPIE.

A new look at NICMOS transmission spectroscopy of HD189733, GJ-436 and XO-1: no conclusive evidence for molecular features

(2010)

Authors:

Neale P Gibson, Frederic Pont, Suzanne Aigrain

Accretion dynamics and disk evolution in NGC 2264: A study based on CoRoT photometric observations

Astronomy and Astrophysics 519:9 (2010)

Authors:

SHP Alencar, PS Teixeira, MM Guimarães, PT McGinnis, JF Gameiro, J Bouvier, S Aigrain, E Flaccomio, F Favata

Abstract:

Context. The young cluster NGC 2264 was observed with the CoRoT satellite for 23 days uninterruptedly in March 2008 with unprecedented photometric accuracy. We present the first results of our analysis of the accreting population belonging to the cluster as observed by CoRoT. Aims.We search for possible light curve variability of the same nature as that observed in the classical T Tauri star AA Tau, which was attributed to a magnetically controlled inner disk warp. The inner warp dynamics is supposed to be directly associated with the interaction between the stellar magnetic field and the inner disk region. Methods.We analyzed the CoRoT light curves of 83 previously known classical T Tauri stars that belong to NGC 2264 classifying them according to their light-curve morphology. We also studied the CoRoT light-curve morphology as a function of a Spitzer-based classification of the star-disk systems. Results.The classification derived on the basis of the CoRoT light-curve morphology agrees very well with the Spitzer IRAC-based classification of the systems. The percentage of AA Tau-like light curves decreases as the inner disk dissipates, from 40%±10% in systems with thick inner disks to 36%± 16% in systems with anemic disks and zero in naked photosphere systems. Indeed, 91%±29% of the CTTS with naked photospheres exhibit pure spot-like variability, while only 18%±7% of the thick disk systems do so, presumably those seen at low inclination and thus free of variable obscuration. Conclusions. AA Tau-like light curves are found to be fairly common, with a frequency of at least ∼30 to 40% in young stars with inner dusty disks. The temporal evolution of the light curves indicates that the structure of the inner disk warp, located close to the corotation radius and responsible for the; obscuration episodes, varies over a timescale of a few (∼1-3) rotational periods. This probably reflects the highly dynamical nature of the star-disk magnetospheric interaction. © 2010 ESO.

Transiting exoplanets from the CoRoT space mission: XII. CoRoT-12b: A short-period low-density planet transiting a solar analog star

Astronomy and Astrophysics 520:14 (2010)

Authors:

M Gillon, A Hatzes, S Csizmadia, M Fridlund, M Deleuil, S Aigrain, R Alonso, M Auvergne, A Baglin, P Barge, SI Barnes, AS Bonomo, P Bordé, F Bouchy, H Bruntt, J Cabrera, L Carone, S Carpano, WD Cochran, HJ Deeg, R Dvorak, M Endl, A Erikson, S Ferraz-Mello, D Gandolfi, JC Gazzano, E Guenther, T Guillot, M Havel, G Hébrard, L Jorda, A Léger, A Llebaria, H Lammer, C Lovis, M Mayor, T Mazeh, J Montalbán, C Moutou, A Ofir, M Ollivier, M Pätzold, F Pepe, D Queloz, H Rauer, D Rouan, B Samuel, A Santerne, J Schneider, B Tingley, S Udry, J Weingrill, G Wuchter

Abstract:

We report the discovery by the CoRoT satellite of a new transiting giant planet in a 2.83 days orbit about a V = 15.5 solar analog star (M * = 1.08±0.08 M⊙, R* = 1.1±0.1 R⊙, Teff = 5675±80 K). This new planet, CoRoT-12b, has a mass of 0.92±0.07 MJup and a radius of 1.44±0.13 RJup. Its low density can be explained by standard models for irradiated planets. © ESO 2010.