Linear Analysis of the Hall Effect in Protostellar Disks

(2000)

Authors:

SA Balbus, C Terquem

Stellar dynamics observations of a double nucleus in M 83

ArXiv astro-ph/0009392 (2000)

Authors:

N Thatte, M Tecza, R Genzel

Abstract:

We report on the discovery of a double nucleus in M 83, based on measurements of the line of sight velocity distribution of stars observed at near infrared wavelengths with the VLT ISAAC spectrograph. We observe two peaks separated by 2.7" in the velocity dispersion profile of light from late-type stars measured along a slit 0.6" wide, centered on the peak of K band emission and with P.A. 51.7 degrees. The first peak coincides with the peak of the K band light distribution, widely assumed to be the galaxy nucleus. The second peak, of almost equal strength, almost coincides with the center of symmetry of the outer isophotes of the galaxy. The secondary peak location has little K band emission, and appears to be significantly extincted, even at near infrared wavelengths. It also lies along a mid-infrared bar, previously identified by Gallais et al. (1991) and shows strong hydrogen recombination emission at 1.875 microns. If we interpret the observed stellar velocity dispersion as coming from a virialized system, the two nuclei would each contain an enclosed mass of 13.2 x 10^6 M_sun within a radius of 5.4pc. These could either be massive star clusters, or supermassive dark objects.

Tidally-induced angular momentum transport in disks

ArXiv astro-ph/0008514 (2000)

Abstract:

We discuss the transport of angular momentum induced by tidal effects in a disk surrounding a star in a pre-main sequence binary system. We consider the effect of both density and bending waves. Although tidal effects are important for truncating protostellar disks and for determining their size, it is unlikely that tidally-induced angular momentum transport plays a dominant role in the evolution of protostellar disks. Where the disk is magnetized, transport of angular momentum is probably governed by MHD turbulence. In a non self-gravitating laminar disk, the amount of transport provided by tidal waves is probably too small to account for the lifetime of protostellar disks. In addition, tidal effects tend to be localized in the disk outer regions.

The response of an accretion disc to an inclined dipole with application to AA Tau

(2000)

Authors:

Caroline Terquem, John CB Papaloizou

Spatially correlated and inhomogeneous random advection

Physics of Fluids AIP Publishing 12:4 (2000) 822-834

Authors:

K Ngan, RT Pierrehumbert