Evidence for H2 dissociation and recombination heat transport in the atmosphere of KELT-9b

Astrophysical Journal Letters American Astronomical Society 888:2 (2020) L15

Authors:

M Mansfield, JL Bean, KB Stevenson, TD Komacek, TJ Bell, Xianyu Tan, M Malik, TG Beatty, I Wong, NB Cowan, L Dang, J-M Désert, JJ Fortney, BS Gaudi, D Keating, EM-R Kempton, L Kreidberg, V Parmentier, KG Stassun

A robust, template-free approach to precise radial velocity extraction

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:3 (2020) 3960-3983

Authors:

VM Rajpaul, S Aigrain, LA Buchhave

Abstract:

Doppler spectroscopy is a powerful tool for discovering and characterizing exoplanets. For decades, the standard approach to extracting radial velocities (RVs) has been to cross-correlate observed spectra with a weighted template mask. While still widely used, this approach is known to suffer numerous drawbacks, and so in recent years increasing attention has been paid to developing new and improved ways of extracting RVs. In this proof-of-concept paper, we present a simple yet powerful approach to RV extraction. We use Gaussian processes to model and align all pairs of spectra with each other; we combine the pairwise RVs thus obtained to produce accurate differential stellar RVs, without constructing any template. Doing this on a highly localized basis enables a data-driven approach to identifying and mitigating spectral contamination, even without the input of any prior astrophysical knowledge. We show that a crude implementation of this method applied to an inactive standard star yields RVs with comparable precision to and significantly lower rms variation than RVs from industry-standard pipelines. Though amenable to numerous improvements, even in its basic form presented here our method could facilitate the study of smaller planets around a wider variety of stars than has previously been possible.

Erratum: “An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star” (2019, AJ, 158, 165)

The Astronomical Journal American Astronomical Society 159:1 (2020) 34-34

Authors:

Andrew W Mayo, Vinesh M Rajpaul, Lars A Buchhave, Courtney D Dressing, Annelies Mortier, Li Zeng, Charles D Fortenbach, Suzanne Aigrain, Aldo S Bonomo, Andrew Collier Cameron, David Charbonneau, Adrien Coffinet, Rosario Cosentino, Mario Damasso, Xavier Dumusque, AF Martinez Fiorenzano, Raphaëlle D Haywood, David W Latham, Mercedes López-Morales, Luca Malavolta, Giusi Micela, Emilio Molinari, Logan Pearce, Francesco Pepe, David Phillips, Giampaolo Piotto, Ennio Poretti, Ken Rice, Alessandro Sozzetti, Stephane Udry

Detection of Ionized Calcium in the Atmosphere of the Ultra-hot Jupiter KELT-9b

The Astrophysical Journal Letters American Astronomical Society 888:1 (2020) l13

Authors:

Jake D Turner, Ernst JW de Mooij, Ray Jayawardhana, Mitchell E Young, Luca Fossati, Tommi Koskinen, Joshua D Lothringer, Raine Karjalainen, Marie Karjalainen

HARMONI - first light spectroscopy for the ELT: spectrograph camera lens mounts

Proceedings of SPIE - The International Society for Optical Engineering SPIE 11451 (2020)

Authors:

A Hidalgo, J Kariuki, J Lynn, W Cheng, A Lowe, Ft Bagci, F Clarke, I Lewis, I Tosh, H Schnetler, J Capone, M Tecza, M Booth, M Rodrigues, N Cann, N Thatte, Z Ozer, T Foster

Abstract:

HARMONI is the first light visible and near-infrared (NIR) integral field spectrograph for the Extremely Large Telescope(ELT). The HARMONI spectrograph will have four near-infrared cameras and two visible, both with seven lenses of various materials and diameters ranging from 286 to 152 mm. The lens mounts design has been optimized for each lens material to compensate for thermal stresses and maintain lens alignment at the operational temperature of 130 K. We discuss their design and mounting concept, as well as assembly and verification steps. We show initial results from two prototypes and outline improvements in the mounting procedures to reach tighter lens alignments. To conclude, we present a description of our future work to measure the decentering of the lenses when cooled down and settled.