Constraining the properties of HD 206893 B. A combination of radial velocity, direct imaging, and astrometry data

Astronomy and Astrophysics EDP Sciences 627 (2019) L9

Authors:

A Grandjean, A-M Lagrange, H Beust, L Rodet, J Milli, P Rubini, C Babusiaux, N Meunier, P Delorme, Suzanne Aigrain, Norbert Zicher, M Bonnefoy, BA Biller, Jean-Loup Baudino, M Bonavita, A Boccaletti, A Cheetham, JH Girard, J Hagelberg, M Janson, J Lannier, C Lazzoni, R Ligi, A-L Maire, D Mesa, C Perrot, D Rouan, A Zurlo

Abstract:

Context. High contrast imaging enables the determination of orbital parameters for substellar companions (planets, brown dwarfs) from the observed relative astrometry and the estimation of model and age-dependent masses from their observed magnitudes or spectra. Combining astrometric positions with radial velocity gives direct constraints on the orbit and on the dynamical masses of companions. A brown dwarf was discovered with the VLT/SPHERE instrument at the Very Large Telescope (VLT) in 2017, which orbits at ∼11 au around HD 206893. Its mass was estimated between 12 and 50 MJ from evolutionary models and its photometry. However, given the significant uncertainty on the age of the system and the peculiar spectrophotometric properties of the companion, this mass is not well constrained.

Aims. We aim at constraining the orbit and dynamical mass of HD 206893 B.

Methods. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than three years. We then combined those data with astrometry data obtained by HIPPARCOS and Gaiawith a time baseline of 24 yr. We used a Markov chain Monte Carlo approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data.

Results. We infer a period between 21 and 33 yr and an inclination in the range 20−41° from pole-on from HD 206893 B relative astrometry. The RV data show a significant RV drift over 1.6 yr. We show that HD 206893 B cannot be the source of this observed RV drift as it would lead to a dynamical mass inconsistent with its photometry and spectra and with HIPPARCOS and Gaia data. An additional inner (semimajor axis in the range 1.4–2.6 au) and massive (∼15 MJ) companion is needed to explain the RV drift, which is compatible with the available astrometric data of the star, as well as with the VLT/SPHERE and VLT/NaCo nondetection.

Stellar activity and rotation of the planet host Kepler-17 from long-term space-borne photometry

Astronomy and Astrophysics EDP Sciences 626 (2019) A38

Authors:

AF Lanza, Y Netto, AS Bonomo, H Parviainen, A Valio, Suzanne Aigrain

Abstract:

Context. The study of young Sun-like stars is fundamental to understanding the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars.

Aims. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 accompanied by a transiting hot Jupiter.

Methods. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots.

Results. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least ∼1400 days although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude ΔΩ/Ω between ∼0.08 ± 0.05 and 0.14 ± 0.05, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of ∼48 days and an indication of a longer cycle of 400−600 days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet.

Conclusions. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.

Spectroscopic transit search: a self-calibrating method for detecting planets around bright stars

Astronomy & Astrophysics EDP Sciences 626 (2019) A97-A97

Authors:

Lennart van Sluijs, Ernst de Mooij, Matthew Kenworthy, Maggie Celeste, Matthew J Hooton, Eric E Mamajek, Brigitta Sipőcz, Ignas AG Snellen, Andrew R Ridden-Harper, Paul A Wilson

Abstract:

Aims. We aim to search for transiting exoplanets around the star β Pictoris using high-resolution spectroscopy and Doppler imaging that removes the need for standard star observations. These data were obtained on the VLT with UVES during the course of an observing campaign throughout 2017 that monitored the Hill sphere transit of the exoplanet β Pictoris b. Methods. We utilized line profile tomography as a method for the discovery of transiting exoplanets. By measuring the exoplanet distortion of the stellar line profile, we removed the need for reference star measurements. We demonstrated the method with white noise simulations, and then looked at the case of β Pictoris, which is a δ Scuti pulsator. We describe a method to remove the stellar pulsations and perform a search for any transiting exoplanets in the resultant data set. We injected fake planet transits with varying orbital periods and planet radii into the spectra and determined the recovery fraction. Results. In the photon noise limited case we can recover planets down to a Neptune radius with an ~80% success rate, using an 8 m telescope with a R ~ 100 000 spectrograph and 20 min of observations per night. The pulsations of β Pictoris limit our sensitivity to Jupiter-sized planets, but a pulsation removal algorithm improves this limit to Saturn-sized planets. We present two planet candidates, but argue that their signals are most likely caused by other phenomena. Conclusions. We have demonstrated a method for searching for transiting exoplanets that (i) does not require ancillary calibration observations, (ii) can work on any star whose rotational broadening can be resolved with a high spectral dispersion spectrograph, and (iii) provides the lowest limits so far on the radii of transiting Jupiter-sized exoplanets around β Pictoris with orbital periods from 15 days to 200 days with >50% coverage.

The rotation of low mass stars at 30 Myr in the cluster NGC 3766.

Proceedings of the International Astronomical Union. International Astronomical Union 15:Suppl 354 (2019) 200-203

Authors:

Julia Roquette, Jerome Bouvier, Estelle Moraux, Herve Bouy, Jonathan Irwin, Suzanne Aigrain, Régis Lachaume

Abstract:

Together with the stellar rotation, the spotted surfaces of low-mass magnetically active stars produce modulations in their brightness. These modulations can be resolved by photometric variability surveys, allowing direct measurements of stellar spin rates. In this pro-ceedings, we present results of a multisite photometric survey dedicated to the measurement of spin rates in the 30 Myr cluster NGC 3766. Inside the framework of the Monitor Project, the cluster was monitored during 2014 in the i-band by the Wide Field Imager at the MPG/ESO 2.2-m telescope. Data from Gaia-DR2 and griz Y photometry from DECam/CTIO were used to identify cluster members. We present spin rates measured for ∼200 cluster members.

Climate of an ultra hot Jupiter: Spectroscopic phase curve of WASP-18b with HST/WFC3

Astronomy and Astrophysics EDP Sciences 625 (2019) A136

Authors:

Jacob Arcangeli, Jean-Michel Desert, Vivien Parmentier, Kevin B Stevenson, Jacob L Bean, Michael R Line, Laura Kreidberg, Jonathan J Fortney, Adam P Showman

Abstract:

We present the analysis of a full-orbit, spectroscopic phase curve of the ultra hot Jupiter (UHJ) WASP-18b, obtained with the Wide Field Camera 3 aboard the Hubble Space Telescope. We measured the normalised day-night contrast of the planet as >0.96 in luminosity: the disc-integrated dayside emission from the planet is at 964 ± 25 ppm, corresponding to 2894 ± 30 K, and we place an upper limit on the nightside emission of <32 ppm or 1430 K at the 3σ level. We also find that the peak of the phase curve exhibits a small, but significant offset in brightness of 4.5 ± 0.5° eastward. We compare the extracted phase curve and phase-resolved spectra to 3D global circulation models and find that broadly the data can be well reproduced by some of these models. We find from this comparison several constraints on the atmospheric properties of the planet. Firstly we find that we need efficient drag to explain the very inefficient day-night recirculation observed. We demonstrate that this drag could be due to Lorentz-force drag by a magnetic field as weak as 10 gauss. Secondly, we show that a high metallicity is not required to match the large day-night temperature contrast. In fact, the effect of metallicity on the phase curve is different from cooler gas-giant counterparts because of the high-temperature chemistry in the atmosphere of WASP-18b. Additionally, we compared the current UHJ spectroscopic phase curves, WASP-18b and WASP-103b, and show that these two planets provide a consistent picture with remarkable similarities in their measured and inferred properties. However, key differences in these properties, such as their brightness offsets and radius anomalies, suggest that UHJ could be used to separate between competing theories for the inflation of gas-giant planets.