The effect of 3D transport-induced disequilibrium carbon chemistry on the atmospheric structure, phase curves, and emission spectra of hot Jupiter HD 189733b

Astrophysical Journal IOP Publishing 880:1 (2019) 14

Authors:

Maria E Steinrueck, Vivien Parmentier, Adam P Showman, Joshua D Lothringer, Roxana E Lupu

Abstract:

On hot Jupiter exoplanets, strong horizontal and vertical winds should homogenize the abundances of the important absorbers CH4 and CO much faster than chemical reactions restore chemical equilibrium. This effect, typically neglected in general circulation models (GCMs), has been suggested to explain discrepancies between observed infrared light curves and those predicted by GCMs. On the nightsides of several hot Jupiters, GCMs predict outgoing fluxes that are too large, especially in the Spitzer 4.5 μm band. We modified the SPARC/MITgcm to include disequilibrium abundances of CH4, CO, and H2O by assuming that the CH4/CO ratio is constant throughout the simulation domain. We ran simulations of hot Jupiter HD 189733b with eight CH4/CO ratios. In the more likely CO-dominated regime, we find temperature changes ≥50–100 K compared to the simulation for equilibrium chemistry across large regions. This effect is large enough to affect predicted emission spectra and should thus be included in GCMs of hot Jupiters with equilibrium temperatures between 600 and 1300 K. We find that spectra in regions with strong methane absorption, including the Spitzer 3.6 and 8 μm bands, are strongly impacted by disequilibrium abundances. We expect chemical quenching to result in much larger nightside fluxes in the 3.6 μm band, in stark contrast to observations. Meanwhile, we find almost no effect on predicted observations in the 4.5 μm band, because the changes in opacity due to CO and H2O offset each other. We thus conclude that disequilibrium carbon chemistry cannot explain the observed low nightside fluxes in the 4.5 μm band.

Constraining the properties of HD 206893 B. A combination of radial velocity, direct imaging, and astrometry data

Astronomy and Astrophysics EDP Sciences 627 (2019) L9

Authors:

A Grandjean, A-M Lagrange, H Beust, L Rodet, J Milli, P Rubini, C Babusiaux, N Meunier, P Delorme, Suzanne Aigrain, Norbert Zicher, M Bonnefoy, BA Biller, Jean-Loup Baudino, M Bonavita, A Boccaletti, A Cheetham, JH Girard, J Hagelberg, M Janson, J Lannier, C Lazzoni, R Ligi, A-L Maire, D Mesa, C Perrot, D Rouan, A Zurlo

Abstract:

Context. High contrast imaging enables the determination of orbital parameters for substellar companions (planets, brown dwarfs) from the observed relative astrometry and the estimation of model and age-dependent masses from their observed magnitudes or spectra. Combining astrometric positions with radial velocity gives direct constraints on the orbit and on the dynamical masses of companions. A brown dwarf was discovered with the VLT/SPHERE instrument at the Very Large Telescope (VLT) in 2017, which orbits at ∼11 au around HD 206893. Its mass was estimated between 12 and 50 MJ from evolutionary models and its photometry. However, given the significant uncertainty on the age of the system and the peculiar spectrophotometric properties of the companion, this mass is not well constrained.

Aims. We aim at constraining the orbit and dynamical mass of HD 206893 B.

Methods. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than three years. We then combined those data with astrometry data obtained by HIPPARCOS and Gaiawith a time baseline of 24 yr. We used a Markov chain Monte Carlo approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data.

Results. We infer a period between 21 and 33 yr and an inclination in the range 20−41° from pole-on from HD 206893 B relative astrometry. The RV data show a significant RV drift over 1.6 yr. We show that HD 206893 B cannot be the source of this observed RV drift as it would lead to a dynamical mass inconsistent with its photometry and spectra and with HIPPARCOS and Gaia data. An additional inner (semimajor axis in the range 1.4–2.6 au) and massive (∼15 MJ) companion is needed to explain the RV drift, which is compatible with the available astrometric data of the star, as well as with the VLT/SPHERE and VLT/NaCo nondetection.

Stellar activity and rotation of the planet host Kepler-17 from long-term space-borne photometry

Astronomy and Astrophysics EDP Sciences 626 (2019) A38

Authors:

AF Lanza, Y Netto, AS Bonomo, H Parviainen, A Valio, Suzanne Aigrain

Abstract:

Context. The study of young Sun-like stars is fundamental to understanding the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in Sun-like stars.

Aims. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 accompanied by a transiting hot Jupiter.

Methods. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots.

Results. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least ∼1400 days although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude ΔΩ/Ω between ∼0.08 ± 0.05 and 0.14 ± 0.05, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of ∼48 days and an indication of a longer cycle of 400−600 days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet.

Conclusions. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.

Spectroscopic transit search: a self-calibrating method for detecting planets around bright stars

Astronomy & Astrophysics EDP Sciences 626 (2019) A97-A97

Authors:

Lennart van Sluijs, Ernst de Mooij, Matthew Kenworthy, Maggie Celeste, Matthew J Hooton, Eric E Mamajek, Brigitta Sipőcz, Ignas AG Snellen, Andrew R Ridden-Harper, Paul A Wilson

Abstract:

Aims. We aim to search for transiting exoplanets around the star β Pictoris using high-resolution spectroscopy and Doppler imaging that removes the need for standard star observations. These data were obtained on the VLT with UVES during the course of an observing campaign throughout 2017 that monitored the Hill sphere transit of the exoplanet β Pictoris b. Methods. We utilized line profile tomography as a method for the discovery of transiting exoplanets. By measuring the exoplanet distortion of the stellar line profile, we removed the need for reference star measurements. We demonstrated the method with white noise simulations, and then looked at the case of β Pictoris, which is a δ Scuti pulsator. We describe a method to remove the stellar pulsations and perform a search for any transiting exoplanets in the resultant data set. We injected fake planet transits with varying orbital periods and planet radii into the spectra and determined the recovery fraction. Results. In the photon noise limited case we can recover planets down to a Neptune radius with an ~80% success rate, using an 8 m telescope with a R ~ 100 000 spectrograph and 20 min of observations per night. The pulsations of β Pictoris limit our sensitivity to Jupiter-sized planets, but a pulsation removal algorithm improves this limit to Saturn-sized planets. We present two planet candidates, but argue that their signals are most likely caused by other phenomena. Conclusions. We have demonstrated a method for searching for transiting exoplanets that (i) does not require ancillary calibration observations, (ii) can work on any star whose rotational broadening can be resolved with a high spectral dispersion spectrograph, and (iii) provides the lowest limits so far on the radii of transiting Jupiter-sized exoplanets around β Pictoris with orbital periods from 15 days to 200 days with >50% coverage.

The rotation of low mass stars at 30 Myr in the cluster NGC 3766.

Proceedings of the International Astronomical Union. International Astronomical Union 15:Suppl 354 (2019) 200-203

Authors:

Julia Roquette, Jerome Bouvier, Estelle Moraux, Herve Bouy, Jonathan Irwin, Suzanne Aigrain, Régis Lachaume

Abstract:

Together with the stellar rotation, the spotted surfaces of low-mass magnetically active stars produce modulations in their brightness. These modulations can be resolved by photometric variability surveys, allowing direct measurements of stellar spin rates. In this pro-ceedings, we present results of a multisite photometric survey dedicated to the measurement of spin rates in the 30 Myr cluster NGC 3766. Inside the framework of the Monitor Project, the cluster was monitored during 2014 in the i-band by the Wide Field Imager at the MPG/ESO 2.2-m telescope. Data from Gaia-DR2 and griz Y photometry from DECam/CTIO were used to identify cluster members. We present spin rates measured for ∼200 cluster members.