Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant Universe
      Astronomical Journal Institute of Physics 154:1 (2017) 28
    
        
    
        Abstract:
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median $z\sim 0.03$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $z\sim 0.6$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.The Spectroscopy and H-band Imaging of Virgo cluster galaxies (SHIVir) Survey: Scaling Relations and the Stellar-to-Total Mass Relation
        (2017)
    
        
    
    
        
      Implications for the Origin of Early-type Dwarf Galaxies: A Detailed Look at the Isolated Rotating Early-type Dwarf Galaxy LEDA 2108986 (CG 611), Ramifications for the Fundamental Plane's S-K(2) Kinematic Scaling, and the Spin-Ellipticity Diagram
      ASTROPHYSICAL JOURNAL  840:2 (2017) ARTN 68
    
        
    
    
        
      The impact of stellar feedback on the density and velocity structure of the interstellar medium
      Monthly Notices of the Royal Astronomical Society  466:1 (2017) 1093-1110
    
        
    
        Abstract:
© 2016 The Authors. We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (H I) in disc galaxies. For our analysis, we carry out ~4.6 pc resolution N-body+adaptive mesh refinement hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way and a Large and Small Magellanic Cloud. We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observedHI in local spiral galaxies from THINGS (TheHI Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS HI density power spectra. We find that kinetic energy power spectra in feedback-regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with supersonic turbulence (E(k) ∝ k -2 ) on scales below the thickness of the HI layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large-scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.WISDOM Project – II. Molecular gas measurement of the supermassive black hole mass in NGC 4697
      Monthly Notices of the Royal Astronomical Society Oxford University Press 468:4 (2017) 4675-4690