The galaxy–halo connection in the VIDEO survey at 0.5 < z < 1.7
Monthly Notices of the Royal Astronomical Society Oxford University Press 459:3 (2016) 2618-2631
Abstract:
We present a series of results from a clustering analysis of the first data release of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey. VIDEO is the only survey currently capable of probing the bulk of stellar mass in galaxies at redshifts corresponding to the peak of star formation on degree scales. Galaxy clustering is measured with the two-point correlation function, which is calculated using a non-parametric kernel-based density estimator. We use our measurements to investigate the connection between the galaxies and the host dark matter halo using a halo occupation distribution methodology, deriving bias, satellite fractions, and typical host halo masses for stellar masses between 10 9.35 and 10 10.85 M ⊙ , at redshifts 0.5 < z < 1.7. Our results show typical halo mass increasing with stellar mass (with moderate scatter) and bias increasing with stellar mass and redshift consistent with previous studies. We find that the satellite fraction increased towards low redshifts, from ~5 per cent at z ~ 1.5 to ~20 per cent at z ~ 0.6. We combine our results to derive the stellar mass-to-halo mass ratio for both satellites and centrals over a range of halo masses and find the peak corresponding to the halo mass with maximum star formation efficiency to be ~2 × 10 12 M ⊙ , finding no evidence for evolution.Linear relation between H i circular velocity and stellar velocity dispersion in early-type galaxies, and slope of the density profiles
Monthly Notices of the Royal Astronomical Society Oxford University Press 460:2 (2016) 1382-1389
Abstract:
© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report a tight linear relation between the H i circular velocity measured at 6 R e and the stellar velocity dispersion measured within 1 R e for a sample of 16 early-type galaxies with stellar mass between 1010 and 1011 M ⊙ . The key difference from previous studies is that we only use spatially resolved v circ (H i) measurements obtained at large radius for a sizeable sample of objects. We can therefore link a kinematical tracer of the gravitational potential in the dark-matter dominated outer regions of galaxies with one in the inner regions, where baryons control the distribution of mass. We find that v circ (H i)= 1.33 σ e with an observed scatter of just 12 per cent. This indicates a strong coupling between luminous and dark matter from the inner- to the outer regions of early-type galaxies, analogous to the situation in spirals and dwarf irregulars. The v circ (H i)-σ e relation is shallower than those based on v circ measurements obtained from stellar kinematics and modelling at smaller radius, implying that v circ declines with radius - as in bulge-dominated spirals. Indeed, the value of v circ (H i) is typically 25 per cent lower than the maximum v circ derived at ~0.2 R e from dynamical models. Under the assumption of power-law total density profiles ρ ∝ r -γ , our data imply an average logarithmic slope 〈γ〉 = 2.18 ± 0.03 across the sample, with a scatter of 0.11 around this value. The average slope and scatter agree with recent results obtained from stellar kinematics alone for a different sample of early-type galaxies.Radial constraints on the initial mass function from TiO features and Wing-Ford band in early-type galaxies
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 457:2 (2016) 1468-1489
Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph
Monthly Notices of the Royal Astronomical Society Oxford University Press 458:3 (2016) 2405-2422
Abstract:
We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2–4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2–4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.Properties of Interstellar Medium in Star-Forming Galaxies at z~1.4 revealed with ALMA
Astrophysical Journal IOP Publishing 819:1 (2016) 82-82