Detection of the secondary eclipse of Qatar-1b in the Ks band
Abstract:
Aims. Qatar-1b is a close-orbiting hot Jupiter (Rp ≃ 1.18 RJ, Mp ≃ 1.33 MJ) around a metal-rich K-dwarf, with orbital separation and period of 0.023 AU and 1.42 days. We have observed the secondary eclipse of this exoplanet in the Ks band with the objective of deriving a brightness temperature for the planet and providing further constraints to the orbital configuration of the system.
Methods. We obtained near-infrared photometric data from the ground by using the OMEGA2000 instrument at the 3.5 m telescope at Calar Alto (Spain) in staring mode, with the telescope defocused. We have used principal component analysis (PCA) to identify correlated systematic trends in the data. A Markov chain Monte Carlo analysis was performed to model the correlated systematics and fit for the secondary eclipse of Qatar-1b using a previously developed occultation model. We adopted the prayer bead method to assess the effect of red noise on the derived parameters.
Results. We measured a secondary eclipse depth of 0.196%+ 0.071%−0.051%, which indicates a brightness temperature in the Ks band for the planet of 1885+ 212-168 K. We also measured a small deviation in the central phase of the secondary eclipse of −0.0079+ 0.0162-0.0043, which leads to a value for ecosω of −0.0123+ 0.0252-0.0067. However, this last result needs to be confirmed with more data.
Improved Dynamical Constraints on the Mass of the central Black Hole in NGC 404
Radial gradients in initial mass function sensitive absorption features in the Coma brightest cluster galaxies
Abstract:
Using the Oxford ShortWavelength Integral Field specTrograph, we trace radial variations of initial mass function (IMF)-sensitive absorption features of three galaxies in the Coma cluster. We obtain resolved spectroscopy of the central 5 kpc for the two central brightest cluster galaxies (BCGs) NGC4889, NGC4874, and the BCG in the south-west group NGC4839, as well as unresolved data for NGC4873 as a low-σ* control.We present radial measurements of the IMF-sensitive features: sodium Na I SDSS , calcium triplet CaT, and iron-hydride FeH0.99, along with the magnesium Mg I0.88 and titanium oxide TiO0.89 features. We employ two separate methods for both telluric correction and sky subtraction around the faint FeH feature to verify our analysis. Within NGC4889 we find strong gradients of Na I SDSS and CaT but a flat FeH profile, which, from comparing to stellar population synthesis models, suggests an old, α-enhanced population with a Chabrier, or even bottom-light IMF. The age and abundance are in line with previous studies but the normal IMF is in contrast to recent results suggesting an increased IMF slope with increased velocity dispersion.We measure flat Na I SDSS and FeH profiles within NGC4874, and determine an old, possibly slightly α-enhanced and Chabrier IMF population. We find an α-enhanced, Chabrier IMF population in NGC4873. Within NGC4839 we measure both strong Na I SDSS and strong FeH, although with a large systematic uncertainty, suggesting a possible heavier IMF. The IMFswe infer for these galaxies are supported by published dynamical modelling. We stress that IMF constraints should be corroborated by further spectral coverage and independent methods on a galaxy-by-galaxy basis.Dominant dark matter and a counter rotating disc: MUSE view of the low luminosity S0 galaxy NGC 5102
Abstract:
The kinematics and stellar populations of the low-mass nearby S0 galaxy NGC 5102 are studied from integral field spectra taken with the Multi-Unit Spectroscopic Explorer. The kinematic maps reveal for the first time that NGC 5102 has the characteristic 2σ peaks indicative of galaxies with counter-rotating discs. This interpretation is quantitatively confirmed by fitting two kinematic components to the observed spectra. Through stellar population analysis, we confirm the known young stellar population in the centre and find steep age and metallicity gradients. We construct axisymmetric Jeans anisotropic models of the stellar dynamics to investigate the initial mass function (IMF) and the dark matter halo of the galaxy. The models show that this galaxy is quite different from all galaxies previously studied with a similar approach: even within the half-light radius, it cannot be approximated with the self-consistent mass-follows-light assumption. Including a Navarro, Frenk & White dark matter halo, we need a heavy IMF and a dark matter fraction of 0.37 ± 0.04 within a sphere of one Re radius to describe the stellar kinematics. The more general model with a free slope of the dark matter halo shows that slope and IMF are degenerate, but indicates that a light weight IMF (Chabrier-like) and a higher dark matter fraction, with a steeper (contracted) halo, fit the data better. Regardless of the assumptions about the halo profile, we measure the slope of the total mass density to be −1.75 ± 0.04. This is shallower than the slope of −2 of an isothermal halo and shallower than published slopes for more massive early-type galaxies.