The Gemini NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars
ArXiv 1309.1462 (2013)
Abstract:
We report results of a direct imaging survey for giant planets around 80 members of the Beta Pic, TW Hya, Tucana-Horologium, AB Dor, and Hercules-Lyra moving groups, observed as part of the Gemini NICI Planet-Finding Campaign. For this sample, we obtained median contrasts of \Delta H=13.9 mag at 1" in combined CH4 narrowband ADI+SDI mode and median contrasts of \Delta H=15.1 mag at 2" in H-band ADI mode. We found numerous (>70) candidate companions in our survey images. Some of these candidates were rejected as common-proper motion companions using archival data; we reobserved with NICI all other candidates that lay within 400 AU of the star and were not in dense stellar fields. The vast majority of candidate companions were confirmed as background objects from archival observations and/or dedicated NICI campaign followup. Four co-moving companions of brown dwarf or stellar mass were discovered in this moving group sample: PZ Tel B (36+-6 MJup, 16.4+-1.0 AU, Biller et al. 2010), CD -35 2722B (31+-8 MJup, 67+-4 AU, Wahhaj et al. 2011), HD 12894B (0.46+-0.08 MSun, 15.7+-1.0 AU), and BD+07 1919C (0.20+-0.03 MSun, 12.5+-1.4 AU). From a Bayesian analysis of the achieved H band ADI and ASDI contrasts, using power-law models of planet distributions and hot-start evolutionary models, we restrict the frequency of 1--20 MJup companions at semi-major axes from 10--150 AU to <18% at a 95.4% confidence level using DUSTY models and to <6% at a 95.4% using COND models.Effect of environment on galaxies mass-size distribution: unveiling the transition from outside-in to inside-out evolution
(2013)
Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 μm★
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 436:1 (2013) L35-L39
Abstract:
We report a 4.8σ detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R ∼ 100 000) spectra taken at 3.2 μm with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=−3+5−6 km s−1) and planet orbital velocity (Kp=154+14−10 km s−1), and determine a H2O line contrast ratio of (1.3 ± 0.2) × 10−3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1σ with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.Fast and Slow Rotators in the Densest Environments: a SWIFT IFS study of the Coma Cluster
ArXiv 1308.6581 (2013)