The nature of galactic bulges from SAURON absorption line strength maps

Proceedings of the International Astronomical Union 2:S241 (2006) 485-488

Authors:

RF Peletier, J Falcón-Barroso, K Ganda, R Bacon, M Cappellari, RL Davies, PT De Zeeuw, E Emsellem, D Krajnović, H Kuntschner, RM McDermid, M Sarzi, G Van De Ven

Abstract:

We discuss SAURON absorption line strength maps of a sample of 24 early-type spirals, mostly Sa. From the Lick indices H, Mgb and Fe 5015 we derive SSP-ages and metallicities. By comparing the scaling relations of Mg b and H and central velocity dispersion with the same relation for the edge-on sample of Falcn-Barroso et al. (2002) we derive a picture in which the central regions of Sa galaxies contain at least 2 components: one (or more) thin, disc-like component, often containing recent star formation, and another, elliptical-like component, consisting of old stars and rotating more slowly, dominating the light above the plane. If one defines a bulge to be the component responsible for the light in excess of the outer exponential disc, then many Sa-bulges are dominated by a thin, disc-like component containing recent star formation. © 2007 International Astronomical Union.

Stellar Populations in KDCs of Sa Galaxies

Proceedings of the International Astronomical Union Cambridge University Press (CUP) 2:S241 (2006) 470-474

Authors:

Jesús Falcón-Barroso, Roland Bacon, Michele Cappellari, Roger Davies, P Tim de Zeeuw, Eric Emsellem, Davor Krajnović, Harald Kuntschner, Richard M McDermid, Reynier F Peletier, Marc Sarzi, Glenn van de Ven

Intense Star-formation and Feedback at High Redshift: Spatially-resolved Properties of the z=2.6 Submillimeter Galaxy SMMJ14011+0252

ArXiv astro-ph/0611769 (2006)

Authors:

NPH Nesvadba, MD Lehnert, R Genzel, F Eisenhauer, AJ Baker, S Seitz, R Davies, D Lutz, L Tacconi, M Tecza, R Bender, R Abuter

Abstract:

We present a detailed analysis of the spatially-resolved properties of the lensed submillimeter galaxy SMMJ14011+0252 at z=2.56, combining deep near-infrared integral-field data obtained with SPIFFI on the VLT with other multi-wavelength data sets. The broad characteristics of SMMJ14011+0252 are in agreement with what is expected for the early evolution of local massive spheroidal galaxies. From continuum and line flux, velocity, and dispersion maps, we measure the kinematics, star-formation rates, gas densities, and extinction for individual subcomponents. The star formation intensity is similar to low-redshift ``maximal starbursts'', while the line fluxes and the dynamics of the emission line gas provide direct evidence for a starburst-driven wind with physical properties very similar to local superwinds. We also find circumstantial evidence for "self-regulated" star formation within J1. The relative velocity of the bluer companion J2 yields a dynamical mass estimate for J1 within about 20 kpc, M_dyn \sim 1\times 10^{11} M_sun. The relative metallicity of J2 is 0.4 dex lower than in J1n/s, suggesting different star formation histories. SED fitting of the continuum peak J1c confirms and substantiates previous suggestions that this component is a z=0.25 interloper. When removing J1c, the stellar continuum and H-alpha line emission appear well aligned spatially in two individual components J1n and J1s, and coincide with two kinematically distinct regions in the velocity map, which might well indicate a merging system. This highlights the close similarity between SMGs and ULIRGs, which are often merger-driven maximal starbursts, and suggests that the intrinsic mechanisms of star-formation and related feedback are similar to low-redshift strongly star-forming systems.

On the origin and fate of ionised-gas in early-type galaxies: the SAURON perspective

(2006)

Authors:

M Sarzi, R Bacon, M Cappellari, RL Davies, E Emsellem, J Falcon-Barroso, D Krajnovic, H Kuntschner, RM McDermid, RF Peletier, T de Zeeuw, G van de Ven

The modulated emission of the ultraluminous X-ray source in NGC 3379

Astrophysical Journal 650:2 I (2006) 879-884

Authors:

G Fabbiano, DW Kim, T Fragos, V Kalogera, AR King, L Angelini, RL Davies, JS Gallagher, S Pellegrini, G Trinchieri, SE Zepf, A Zezas

Abstract:

We report recent Chandra observations of the ULX in the elliptical galaxy NGC 3379 that clearly detect two flux variability cycles. Comparing these data with the Chandra observation of ∼5 years ago, we measure a flux modulation with a period of ∼12.6 hr. Moreover, we find that the emission undergoes a correlated spectral modulation, becoming softer at low flux. We argue that our results establish this source as a ULX binary in NGC 3379. Given the old stellar population of this galaxy, the ULX is likely to be a soft transient; however, historical X-ray sampling suggests that the current "on" phase has lasted ∼10yr. We discuss our results in terms of ADC and wind-feedback models. If the flux modulation is orbital, we can constrain the donor mass and orbital period at the onset of mass transfer within 1.15-1.4 Ṁ and 12.5-17 hr, respectively. The duration of the mass transfer phase so far is probably ∼ 1 Gyr, and the binary has been a soft X-ray transient throughout this time. These constraints are insensitive to the mass of the accretor. © 2006. The American Astronomical Society. All rights reserved.